Browse > Article
http://dx.doi.org/10.7857/JSGE.2022.27.4.022

Review on the Remediation Method for Groundwater Contaminated with Cadmium  

Kwon, JongBeom (National Institute of Environmental Research)
Park, Sunhwa (National Institute of Environmental Research)
Kim, Deok Hyun (National Institute of Environmental Research)
Yoon, JongHyun (National Institute of Environmental Research)
Choi, Hyeonhee (National Institute of Environmental Research)
Kim, Moonsu (National Institute of Environmental Research)
Kim, Young (Korea University)
Shin, Sun-Kyoung (National Institute of Environmental Research)
Kim, Hyun-Koo (National Institute of Environmental Research)
Publication Information
Journal of Soil and Groundwater Environment / v.27, no.4, 2022 , pp. 22-36 More about this Journal
Abstract
Cadmium is a class 1 carcinogen classified by the International Agency for Research on Cancer (IARC) and has a high potential for leaching into groundwater. Therefore, it is necessary to address cadmium contamination by employing adequate treatment methodologies. Although various methods have been suggested to reduce cadmium in groundwater, their applications often suffer from various limitation arising from heterogeneous field conditions and technical difficulties. In this work, several in-situ technologies to treat cadmium contaminated groundwater were reviewed and discussed by separately addressing physicochemical, chemical and biological methods. In particular, the optimum cadmium remediation strategies that involve physical removal of source area → physicochemical and chemical remediation → biological remediation were proposed by considering reduction efficiency, adsorption rate, economic feasibility and ease of field application in groundwater.
Keywords
Heavy metal; Cadmium; Remediation technology; Reduction; Precipitation;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Ullah, S., Faiz, P., and Leng, S., 2020, Synthesis, Mechanism, and Performance Assessment of Zero-Valent Iron for Metal-Contaminated Water Remediation: A Review, CLEAN-S. A. W., 48(9), 2000080.
2 Vakili, M., Deng, S., Cagnetta, G., Wang, W., Meng, P., Liu, D., and Yu, G., 2019, Regeneration of chitosan-based adsorbents used in heavy metal adsorption: A review, Se. Purifi. Tech., 224, 373-387.   DOI
3 Vanderheyden, S., Van Ammel, R., Sobiech-Matura, K., Vanreppelen, K., Schreurs, S., Schroeyers, W., Yperman, J., and Carleer, R., 2016, Adsorption of cesium on different types of activated carbon, J. Radio. Nu. Chemi., 310(1), 301-310.   DOI
4 Wang, M. and Liu, X., 2021, Applications of red mud as an environmental remediation material: A review, J. Hazard. Mater., 408, 124420.
5 Wang, S. and Wu, H., 2006, Environmental-benign utilisation of fly ash as low-cost adsorbents, J. Hazard. Mater., 136(3), 482-501.   DOI
6 Waybrant, K., Blowes, D., and Ptacek, C., 1998, Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage, Environ. Sci. Technol., 32(13), 1972-1979.   DOI
7 Weber, A., Ruhl, A.S., and Amos, R.T., 2013, Investigating dominant processes in ZVI permeable reactive barriers using reactive transport modeling, J. Contami. Hydro., 151, 68-82.   DOI
8 Yang, L., Donahoe, R.J., and Redwine, J.C., 2007, In situ chemical fixation of arsenic-contaminated soils: An experimental study, Sci. Envi., 387(1-3), 28-41.
9 Zaini, M.A.A., Amano, Y., and Machida, M., 2010, Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber, J. Hazard. Mater., 180(1-3), 552-560.   DOI
10 Rao, K., Mohapatra, M., Anand, S., and Venkateswarlu, P., 2010, Review on cadmium removal from aqueous solutions, J. Engin. Sci. Tech., 2(7).
11 Rubinos, D.A. and Spagnoli, G., 2019, Assessment of red mud as sorptive landfill liner for the retention of arsenic (V), J. Envi. Manage., 232, 271-285.   DOI
12 Shen, Y. and Buick, R., 2004, The antiquity of microbial sulfate reduction, Earth-Sci. Review., 64(3-4), 243-272.   DOI
13 Stefaniuk, M., Oleszczuk, P., Ok, Y.S., 2016, Review on nano zerovalent iron (nZVI): From synthesis to environmental applications, Chemi. Engin. J., 287, 618-632.   DOI
14 Shin, E.C., Park, J.J., Jeong, C.G., Kim, S.H., 2014, Adsorption characteristics evaluation of natural zeolite for heavy-metal contaminated material remediation, J. Korea. Geo. Soci., 13(2), 59-67.   DOI
15 Singh, B., Alloway, B., and Bochereau, F., 2000, Cadmium sorption behavior of natural and synthetic zeolites, Communi. S. Sci. P. A., 31(17-18), 2775-2786.
16 Song, J., Huang, G., Han, D., Hou, Q., Gan, L., and Zhang, M., 2021, A review of reactive media within permeable reactive barriers for the removal of heavy metal (loid) s in groundwater: Current status and future prospects, J. Clean. Pro., 319, 128644.
17 Su, Y., Adeleye, A.S., Keller, A.A., Huang, Y., Dai, C., Zhou, X., and Zhang, Y., 2015, Magnetic sulfide-modified nanoscale zerovalent iron (S-nZVI) for dissolved metal ion removal, W. Re., 74, 47-57.   DOI
18 Wang, S., Gao, B., Zimmerman, A.R., Li, Y., Ma, L., Harris, W.G., and Migliaccio, K.W., 2015, Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass, Chemo., 134, 257-262.   DOI
19 Su, Y., Lowry, G.V., Jassby, D., Zhang. Y., 2019, Sulfide-modified NZVI(S-NZVI): Synthesis, characterization, and reactivity, Nano. Zero. I. Parti. Envi. Re., 359-386.
20 Scherer, M.M., Richter, S., Valentine, R.L., and Alvarez, P.J., 2000, Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up, Critical Reviews in Microbiology, 26(4), 221-264.   DOI
21 Colombani, N., Gervasio, M.P., Castaldelli, G., and Mastrocicco, M., 2020, Soil conditioners effects on hydraulic properties, leaching processes and denitrification on a silty-clay soil, Sci. Envi., 733, 139342.
22 Taamneh, Y. and Sharadqah, S., 2017, The removal of heavy metals from aqueous solution using natural Jordanian zeolite, Appl. W. Sci., 7(4), 2021-2028.   DOI
23 Tajar, A.F., Kaghazchi, T., and Soleimani, M., 2009, Adsorption of cadmium from aqueous solutions on sulfurized activated carbon prepared from nut shells, J. Hazard. Mater., 165(1-3), 1159-1164.   DOI
24 Tandon, P.K. and Singh, S.B., 2016, Redox processes in water remediation, Envi. Chemi. Letter., 14(1), 15-25.   DOI
25 Baker, H.M., Massadeh, A.M., and Younes, H.A., 2009, Natural Jordanian zeolite: removal of heavy metal ions from water samples using column and batch methods, Envi. moni. assess., 157(1), 319-330.   DOI
26 Tasharrofi, S., Rouzitalab, Z., Maklavany, D.M., Esmaeili, A., Rabieezadeh, M., Askarieh, M., Rashidi, A., and Taghdisian, H., 2020, Adsorption of cadmium using modified zeolite-supported nanoscale zero-valent iron composites as a reactive material for PRBs, Sci. Envi., 736, 139570.
27 Thornton, E. and Jackson, R., 1994, Laboratory and Field Evaluation of the Gas Treatment Approach for Insitu Remediation of Chromate-contaminated Soils, Westinghouse Hanford Co.
28 Amos, P.W. and Younger, P.L., 2003, Substrate characterisation for a subsurface reactive barrier to treat colliery spoil leachate, W. Re., 37(1), 108-120.   DOI
29 Bhatnagar, A. and Sillanpaa, M., 2009, Applications of chitin- and chitosan-derivatives for the detoxification of water and wastewater-a short review, Advan. Inter. Science., 152(1-2), 26-38.   DOI
30 Caccin, M., Giacobbo, F., Da Ros, M., Besozzi, L., and Mariani, M., 2013, Adsorption of uranium, cesium and strontium onto coconut shell activated carbon, J. Radi. Nu. Chemi., 297(1), 9-18.   DOI
31 Canty, M., 2000, Innovative in situ treatment of acid mine drainage using sulfate-reducing bacteria, Fifth International Conference on Acid Rock Drainage (ICARD) Proceedings, 2, pp. 1139-1148.
32 Egirani, D., Poyi, N., and Shehata, N., 2020, Preparation and characterization of powdered and granular activated carbon from Palmae biomass for cadmium removal, Envi. Sci. & Tech., 17(4), 2443-2454.
33 Erto, A., Lancia, A., Bortone, I., Di Nardo, A., Di Natale, M., and Musmarra, D., 2011, A procedure to design a Permeable Adsorptive Barrier (PAB) for contaminated groundwater remediation, J. Envi. Manage., 92(1), 23-30.   DOI
34 Kaprara, E., Pinakidou, F., Paloura, E.C., Zouboulis, A.I., and Mitrakas, M., 2018, Continuous flow process of Cr (VI) removal from drinking water through reduction onto FeOOH by inorganic sulfur reductants, W. Sci. Tech.: W. Su., 18(2), 737-744.   DOI
35 Benguella, B. and Benaissa, H., 2002, Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies, W. Re., 36(10), 2463-2474.   DOI
36 Jha, I., Iyengar, L., and Rao, A.P., 1988, Removal of cadmium using chitosan, J. Envi. Engin., 114(4), 962-974.   DOI
37 Jun, D., Yongsheng, Z., Weihong, Z., and Mei, H., 2009, Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater, J. Hazard. Mater., 161(1), 224-230.   DOI
38 Kiran, M.G., Pakshirajan, K., and Das, G., 2017, An overview of sulfidogenic biological reactors for the simultaneous treatment of sulfate and heavy metal rich wastewater, Chemi. Engin. Sci., 158, 606-620.   DOI
39 Kovar, K. and Herbert, M., 1998, Groundwater Quality: Remediation and Protection: Proceedings of the GQ'98 Conference Held in Tubingen, Germany, from 21 to 25 September, IAHS Press, Place, Published.
40 Kubier, A., Wilkin, R.T., and Pichler, T., 2019. Cadmium in soils and groundwater: a review, Appl. Geochemi., 108, 104388.
41 Lapointe, F., Fytas, K., and McConchie, D., 2006, Efficiency of BauxsolTM in permeable reactive barriers to treat acid rock drainage, M. W. Envi., 25(1), 37-44.   DOI
42 Lee, M., Paik, I.S., Kim, I., Kang, H., and Lee, S., 2007, Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate, J. Hazard. Mater., 144(1-2), 208-214.   DOI
43 Liang, L., Li, X., Lin, Z., Tian, C., and Guo, Y., 2020, The removal of Cd by sulfidated nanoscale zero-valent iron: The structural, chemical bonding evolution and the reaction kinetics, Chemi. Engin. J., 382, 122933.
44 Li, D., Kaplan, D.I., Knox, A.S., Crapse, K.P., and Diprete, D.P., 2014, Aqueous 99Tc, 129I and 137Cs removal from contaminated groundwater and sediments using highly effective low-cost sorbents, J. Envi. Radio., 136, 56-63.   DOI
45 Li, Z., Gu, H., Hong, B., Wang, N., and Chen, M., 2022, An innovative process for dealkalization of red mud using leachate from Mn-containing waste, J. Envi. Chemi. Engin., 10(2), 107222.
46 Lockwood, C.L., Mortimer, R.J., Stewart, D.I., Mayes, W.M., Peacock, C.L., Polya, D.A., Lythgoe, P.R., Lehoux, A.P., Gruiz, K., and Burke, I.T., 2014, Mobilisation of arsenic from bauxite residue (red mud) affected soils: effect of pH and redox conditions, Appl. Geochemi., 51, 268-277.   DOI
47 Lin, X., Burns, R.C., and Lawrance, G.A., 2005, Heavy metals in wastewater: the effect of electrolyte composition on the precipitation of cadmium (II) using lime and magnesia, Water, Air, and Soil Pollution, 165(1), 131-152.   DOI
48 Liu, X., Chen, G.-R., Lee, D.-J., Kawamoto, T., Tanaka, H., Chen, M.-L., and Luo, Y.-K., 2014, Adsorption removal of cesium from drinking waters: A mini review on use of biosorbents and other adsorbents, Bio. Tech., 160, 142-149.   DOI
49 Ludwig, R.D., McGregor, R.G., Blowes, D.W., Benner, S.G., and Mountjoy, K., 2002, A permeable reactive barrier for treatment of heavy metals, Ground., 40(1), 59-66.   DOI
50 Mariana, M., HPS, A.K., Mistar, E., Yahya, E.B., Alfatah, T., Danish, M., and Amayreh, M., 2021, Recent advances in activated carbon modification techniques for enhanced heavy metal adsorption, J. W. Proc. Engin., 43, 102221.
51 Moraci, N. and Calabro, P.S., 2010, Heavy metals removal and hydraulic performance in zero-valent iron/pumice permeable reactive barriers, J. Envi. Manage., 91(11), 2336-2341.   DOI
52 Miao, Z., Brusseau, M., Carroll, K.C., Carreon-Diazconti, C., and Johnson, B., 2012, Sulfate reduction in groundwater: characterization and applications for remediation, Envi. Geochemi. Heal., 34(4), 539-550.   DOI
53 Mohammed, A. S., Kapri, A., and Goel, R., 2011, Heavy metal pollution: Source, impact, and remedies, Biomanage. Metal-con. Soil., 20, 1-28   DOI
54 Montana, M., Camacho, A., Serrano, I., Devesa, R., Matia, L., and Valles, I., 2013, Removal of radionuclides in drinking water by membrane treatment using ultrafiltration, reverse osmosis and electrodialysis reversal, J. Envi. Radio., 125, 86-92.   DOI
55 Benner, S., Blowes, D.W., Gould, W.D., Herbert, R.B., and Ptacek, C.J., 1999, Geochemistry of a permeable reactive barrier for metals and acid mine drainage, Envi. Sci. & Tech., 33(16), 2793-2799.   DOI
56 Bewley, R., 2007, Treatment of chromium contamination and chromium ore processing residue, Tech. Bulletin., 14.
57 Burakov, A.E., Galunin, E.V., Burakova, I.V., Kucherova, A.E., Agarwal, S., Tkachev, A.G., and Gupta, V.K., 2018, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review, Ecotoxic. Envi. Safety., 148, 702-712.   DOI
58 Clifford, D., Subramonian, S., and Sorg, T.J., 1986, Water treatment processes. III. Removing dissolved inorganic contaminants from water, Environ. Sci. Tech., 20(11), 1072-1080.   DOI
59 Dong, X., Ma, L.Q., and Li, Y., 2011, Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing, J. Hazard. Mater., 190(1-3), 909-915.   DOI
60 Bashir, A., Malik, L.A., Ahad, S., Manzoor, T., Bhat, M.A., Dar, G., and Pandith, A.H., 2019, Removal of heavy metal ions from aqueous system by ion-exchange and biosorption methods, Envi. Chemi. Letter., 17(2), 729-754.   DOI
61 Fine, P., Scagnossi, A., Chen, Y., and Mingelgrin, U., 2005, Practical and mechanistic aspects of the removal of cadmium from aqueous systems using peat, Envi. Pollu., 138(2), 358-367.   DOI
62 Frindte, K., Allgaier, M., Grossart, H.-P., and Eckert, W., 2015, Microbial response to experimentally controlled redox transitions at the sediment water interface, PLoS One, 10(11), e0143428.
63 Fruchter, J., Cole, C., and Williams, M., 1997, Creation of a Subsurface Permeable Treatment Barrier Using In situ Redox Manipulation, US Department of Energy (USDOE), Washington DC (United States).
64 Geets, J., Diels, L., Geert, K.V., Brummeler, E.T., Broek, P.v.d., Ghyoot, W., Feyaerts, K., and Gevaerts, W., 2003, Proceedings Consoil 2003, Place, Published.
65 Hanumantha Rao, B. and Gangadhara Reddy, N., 2017, Geoenvironmental Practices and Sustainability, pp. 69-89, Springer.
66 Hasan, S., Krishnaiah, A., Ghosh, T.K., Viswanath, D.S., Boddu, V.M., and Smith, E.D., 2006, Adsorption of divalent cadmium (Cd (II)) from aqueous solutions onto chitosan-coated perlite beads, Ind. Eng. Chem. Res., 45(14), 5066-5077.   DOI
67 Hashim, M.A., Mukhopadhyay, S., Sahu, J.N., and Sengupta, B., 2011, Remediation technologies for heavy metal contaminated groundwater, J. Envi. Manage., 92(10), 2355-2388.   DOI
68 Hem, J.D., 1985, Study and Interpretation of the Chemical Characteristics of Natural Water, Department of the Interior, US Geological Survey, Place, Published.
69 Ghaeminia, M. and Mokhtarani, N., 2018, Remediation of nitrate-contaminated groundwater by PRB-Electrokinetic integrated process, J. Envi. Manage., 222, 234-241.   DOI
70 Hong, M., Yu, L., Wang, Y., Zhang, J., Chen, Z., Dong, L., Zan, Q., and Li, R., 2019, Heavy metal adsorption with zeolites: The role of hierarchical pore architecture, Chemi. Engin. J., 359, 363-372.   DOI
71 Huggins, T.M., Haeger, A., Biffinger, J.C., and Ren, Z.J., 2016, Granular biochar compared with activated carbon for wastewater treatment and resource recovery, W. Re., 94, 225-232.   DOI
72 Ibrahimi, M.M. and Sayyadi, A.S., 2015, Application of natural and modified zeolites in removing heavy metal cations from aqueous media: an overview of including parameters affecting the process, J. Geo. Agri. Envi. Sci., 3(2), 1-7.
73 Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S., and Cao, X., 2016, A review of biochar as a low-cost adsorbent for aqueous heavy metal removal, Envi. Sci. & Tech., 46(4), 406-433.   DOI
74 Kasozi, G.N., Zimmerman, A.R., Nkedi-Kizza, P., and Gao, B., 2010, Catechol and humic acid sorption onto a range of laboratory-produced black carbons (biochars), Environ. Sci. Technol., 44(16), 6189-6195.   DOI
75 Joo, S.H., Feitz, A.J., and Waite, T.D., 2004, Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron, Environ. Sci. Technol., 38(7), 2242-2247.   DOI
76 Lombi, E., Zhao, F.-J., Zhang, G., Sun, B., Fitz, W., Zhang, H., and McGrath, S.P., 2002, In situ fixation of metals in soils using bauxite residue: chemical assessment, Envi. Pollu., 118(3), 435-443.   DOI
77 Mandal, S., Muralidharan, C., and Mandal, A.B., 2019, Water pollution remediation techniques with special focus on adsorption, Advanced Research in Nanosciences for Water Technology, pp. 39-68, Springer.
78 Motsi, T. 2010 Remediation of Acid Mine Drainage using Natural Zeolite, University of Birmingham.
79 Marsh, H. and Reinoso, F.R., 2006, Activated Carbon, Elsevier, Place, Published.
80 Mohan, D. and Pittman Jr, C.U., 2006, Activated carbons and low cost adsorbents for remediation of tri-and hexavalent chromium from water, J. Hazard. Mater., 137(2), 762-811.   DOI
81 Mukherjee, A., Zimmerman, A., and Harris, W., 2011, Surface chemistry variations among a series of laboratory-produced biochars, Geoderma, 163(3-4), 247-255.   DOI
82 Puls, R.W., Paul, C.J., and Powell, R.M., 1999, The application of in situ permeable reactive (zero-valent iron) barrier technology for the remediation of chromate-contaminated groundwater: a field test, Appl. Geochemi., 14(8), 989-1000.   DOI
83 Saikhao, L., Setthayanond, J., Karpkird, T., and Suwanruji, P., 2017, Comparison of sodium dithionite and glucose as a reducing agent for natural indigo dyeing on cotton fabrics, MATEC Web of Conferences., 108, 03001, EDP Sciences.
84 Sedlazeck, K.P., Vollprecht, D., Muller, P., Mischitz, R., and Giere, R., 2020, Impact of an in-situ Cr (VI)-contaminated site remediation on the groundwater, Envi. Sci. Pollu. Re., 27(13), 14465-14475.   DOI
85 Zhou, D., Li, Y., Zhang, Y., Zhang, C., Li, X., Chen, Z., Huang, J., Li, X., Flores, G., and Kamon, M., 2014, Column test-based optimization of the permeable reactive barrier (PRB) technique for remediating groundwater contaminated by landfill leachates, J. Contami. Hydro., 168, 1-16.   DOI
86 Mucsi, G., Halyag, N., Kurusta, T., and Kristaly, F., 2021, Control of carbon dioxide sequestration by mechanical activation of red mud, Wa. Bio. Valori., 12(12), 6481-6495.   DOI
87 Ali Redha, A., 2020, Removal of heavy metals from aqueous media by biosorption, A. J. Bas. Appl. Sci., 27(1), 183-193.   DOI
88 Obiri-Nyarko, F., Grajales-Mesa, S.J., and Malina, G., 2014, An overview of permeable reactive barriers for in situ sustainable groundwater remediation, Chemo., 111, 243-259.   DOI
89 Mochida, I., Korai, Y., Shirahama, M., Kawano, S., Hada, T., Seo, Y., Yoshikawa, M., and Yasutake, A., 2000, Removal of SOx and NOx over activated carbon fibers, Carbon., 38(2), 227-239.   DOI
90 Falciglia, P.P., Gagliano, E., Brancato, V., Malandrino, G., Finocchiaro, G., Catalfo, A., De Guidi, G., Romano, S., Roccaro, P., and Vagliasindi, F.G., 2020, Microwave based regenerating permeable reactive barriers (MW-PRBs): proof of concept and application for Cs removal, Chemo., 251, 126582.
91 Amonette, J., Szecsody, J., Schaef, H., Gorby, Y., Fruchter, J. and Templeton, J., 1994, Abiotic Reduction of Aquifer Materials by Dithionite: A Promising In-situ Remediation Technology, Pacific Northwest Lab.
92 Angelov, A. and Georgiev, P., 1998, In situ Treatment of Groundwater at Burgas Copper Mines, Bulgaria, by Enhancing Microbial Sulphate Reduction, p. 249, IAHS Press.