• Title/Summary/Keyword: In-situ fitting

Search Result 38, Processing Time 0.014 seconds

An Experimental Study on the Fitting of 64 Channel Digital Hearing Aid by In-situ Method (64채널 디지털 보청기의 In-situ에 의한 휘팅 실험 연구)

  • Jarng, Soon-Suck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.5
    • /
    • pp.273-279
    • /
    • 2012
  • In this thesis, a nonlinear compression fitting method was studied for each frequency channel of a 64 channel digital hearing aid. Unlike conventional fitting formula method done from the result of the hearing loss test, the present fitting method uses the auditory threshold of sound pressure measured near the tympanic membrane while ITE (In-The-Ear) hearing aid is fitted into the user's ear canal. Also, the spectral distribution of the voice sound pressure was used for realizing of output sound pressure compression curves against input sound pressure level. Theoretical research results of FFT-iFFT compression algorithm has been evaluated by experimental gain measurements at each different input sound pressure level 50 dB, 70 dB, 90 dB respectively.

Determination of Undrained Shear Strength In Clay from Cone Pressuremeter Test (Cone Pressuremeter를 이용한 점성토의 전단 강도 산정)

  • 이장덕
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.49-58
    • /
    • 2004
  • The cone pressuremeter test (CPM) is a new in-situ test which combines a standard cone penetration test with a pressuremeter. The cone pressuremeter tests in clay are presented and analyzed. An analytical solution of CPM incorporated non-linear soil behavior with no volume change is presented, and curve fitting technique is proposed to make use of both the loading and unloading portions of the pressuremeter test. The proposed method is accomplished by putting greater emphasis on the unloading portion. Twenty CPM tests are analyzed using the proposed method, and the derived undrained shear strength of soil is compared with other tests such as field vane tests and laboratory tests. The interpreted soil parameters had resonable values when compared to other in-situ and laboratory test results. The cone pressuremeter has provided reliable measures of undrained shear strength using curve fitting method.

Measurement of Shear Modulus at Small Strains using Cone Pressuremeter Test (Cone Pressuremeter Test를 이용한 미소변형에서 전단변형계수 측정)

  • Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.135-145
    • /
    • 2005
  • Geotechnical design routinely requires that in-situ strength, stiffness of the ground be determined. In the working stress conditions, the strain level in a ground experienced by existing structures and during construction is less than about 0.1%~1%. In order to analyze the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. Cone pressuremeter tests were performed on the western off-shore region of korea, and analyzed using cavity expansion theory and curve fitting technique to obtain the shear modulus at small strain level of $10^{-1}%$. The value of $E_u/S_u$ ratio for the marine clay shows about 589 at the small strain. However the value of $E_u/S_u$ estimated by lab tests are much smaller values ranged from 81 to 91. It is indicated that the curve fitting technique from CPM tests results can be used to obtain the shear modulus at small strain.

An Analytical Modeling for Bridging Stress Function Involving Grain Size Distribution in a Polycrystalline Alumina (다결정 알루미나에서 결정립 크기 분포를 포함하는 Bridging 응력함수의 해석적 모델링)

  • 손기선;이성학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.31 no.12
    • /
    • pp.1449-1458
    • /
    • 1994
  • A new analytical model which can discribe the relationship between the bridging stress and the crack opening displacement was proposed to investigate the microstructural effect on the R-curve behavior in a polycrystalline alumina. The crack opening displacement according to the distance behind the stationary crack tip was measured using in-situ fracture technique in an SEM, and then used for a fitting procedure to obtain the distribution of bridging stress. The current model and an empirical power law relation were introduced into the fitting procedure. The results indicated that the bridging stress function and R-curve computed by the current model were consistent with those computed by the power law relation. The microstructural factor, e.g., the distribution of grain size, was also found to be closely related to the bridging stress. Thus, this model explained well the interaction effect between the distribution of bridging stress and the local-fracture-controlling microstructure, providing important information for the systematic interpretation of microfracture mechanism including R-curve behavior of a monolithic alumina.

  • PDF

Development of Error Compensation Algorithm for Image based Measurement System (미세부품 영상 측정시 진동에 의한 오차 보상 알고리즘 개발)

  • Pyo Chang Ryul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.102-108
    • /
    • 2004
  • In this paper, we studied a vibration problem that is critical and common to most precision measurement systems. For micro mechanical part measurements, results obtained from the vision-based precision measurement system may contain errors due to the vibration. In order to defeat this generic problem, for the current study, a PC based image processing technique was used first, to assess the effect of the vibration to the precision measurement and second, to develop an in-situ calibration algorithm that automatically compensate the measurement results in real time. We used a set of stereoscopic CCD cameras to acquire the images for the dimensional measurement and the reference measurement. The mapping function was obtained through the in-situ calibration to compensate the measurement results and the statistical analysis for the actual results is provided in the paper. Based on the current statistical study, it is expected to obtain high precision results for the micro measurement systems.

Application of Linear Curve Fitting Methods for Slug Test Analysis in Compressible Aquifer (압축성이 큰 지반에서 순간변위(충격)시험 해석을 위한 선형 커브피팅법(Linear Curve Fitting Methods)의 적용)

  • Choi, Hang-Seok;Lee, Chul-Ho;Nguyen, The Bao
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.11
    • /
    • pp.99-107
    • /
    • 2007
  • The linear curve fitting methods such as the Hvorslev method and the Bouwer and Rice method provide a rapid and simple means to analyze slug test data for estimating in-situ hydraulic conductivity (k) of geologic material. However, when analyzing a slug test in a relatively compressible aquifer, these methods have difficulties in fitting a straight line to the semi-logarithmic plot of the test data that shows a concave-upward curvature because the linear curve fitting methods ignore the role of the compressibility or specific storage ($S_s$) of an aquifer. The comparison of the Hvorslev method and the Bouwer and Rice method is made far a partially-penetrating well geometry to show analytically that the Hvorslev method estimates higher hydraulic conductivity than the Bouwer and Rice method except that the well intake section locates very close to the bottom of the aquifer. The effect of fitting a straight line to the slug test data is evaluated along with the dimensionless compressibility parameter (${\alpha}$) ranging from 0.001 to 1. A modified linear curve fitting method that is expanded from Chirlin's approach to the case of a partially penetrating well with the basic-time-lag fitting method is introduced. A case study for a compressible glacial till is made to verify the proposed method by comparing with a type curve method (KGS method).

Estimation of Coastal Suspended Sediment Concentration using Satellite Data and Oceanic In-Situ Measurements

  • Lee, Min-Sun;Park, Kyung-Ae;Chung, Jong-Yul;Ahn, Yu-Hwan;Moon, Jeong-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.6
    • /
    • pp.677-692
    • /
    • 2011
  • Suspended sediment is an important oceanic variable for monitoring changes in coastal environment related to physical and biogeochemical processes. In order to estimate suspended sediment concentration (SSC) from satellite data, we derived SSC coefficients by fitting satellite remote sensing reflectances to in-situ suspended sediment measurements. To collect in-situ suspended sediment, we conducted ship cruises at 16 different locations three times for the periods of Sep.-November 2009 and Jul. 2010 at the passing time of Landsat $ETM_+$. Satellite data and in-situ data measured by spectroradiometers were converted to remote sensing reflectances ($R_{rs}$). Statistical approaches proved that the exponential formula using a single band of $R_{rs}$(565) was the most appropriate equation for the estimation of SSC in this study. Satellite suspended sediment using the newly-derived coefficients showed a good agreement with insitu suspended sediment with an Root Mean Square (RMS) error of 1-3 g/$m^3$. Satellite-observed SSCs tended to be overestimated at shallow depths due to bottom reflection presumably. This implies that the satellite-based SSCs should be carefully understood at the shallow coastal regions. Nevertheless, the satellite-derived SSCs based on the derived SSC coefficients, for the most cases, reasonably coincided with the pattern of in-situ suspended sediment measurements in the study region.

An In-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor

  • Lee, Pan-Mook;Jun, Bong-Huan;Park, Jin-Yeong;Shim, Hyung-Won;Kim, Jae-Soo;Jung, Hun-Sang;Yoon, Ji-Young
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.60-67
    • /
    • 2011
  • This paper presents an in-situ correction method to compensate for the position error of an autonomous underwater vehicle (AUV) near the sea floor. AUVs generally have an inertial navigation system assisted with auxiliary navigational sensors. Since the inertial navigation system shows drift in position without the bottom reflection of a Doppler velocity log, external acoustic positioning systems, such as an ultra short baseline (USBL), are needed to set the position without surfacing the AUV. The main concept of the correction method is as follows: when the AUV arrives near the sea floor, the vehicle moves around horizontally in a circular mode, while the USBL transceiver installed on a surface vessel measures the AUV's position. After acquiring one data set, a least-square curve fitting method is adopted to find the center of the AUV's circular motion, which is transferred to the AUV via an acoustic telemetry modem (ATM). The proposed method is robust for the outlier of USBL, and it is independent of the time delay for the data transfer of the USBL position with the ATM. The proposed method also reduces the intrinsic position error of the USBL, and is applicable to the in-situ calibration as well as the initialization of the AUVs' position. Monte Carlo simulation was conducted to verify the effectiveness of the method.

Slug Test Analysis in Vertical Cutoff Walls with Consideration of Filter Cake (연직차수벽에서 필터케익을 고려한 순간 변위시험 해석방법)

  • Nguyen, The Bao;Lee, Chul-Ho;Choi, Hang-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.220-228
    • /
    • 2008
  • In constructing a slurry trench cutoff wall, a thin but relatively impermeable layer called filter cake can be formed on the excavation surface. The filter cake significantly influences the result of slug test analysis in the cutoff wall. This study is to examine the effect of filter cake on evaluating in situ hydraulic conductivity of the vertical cutoff wall along with slug test analyses. The numerical program Slug_3D was modified to take filter cake into account in the slug test simulation. With consideration of filter cake, the type curve method and the modified line-fitting method were used to reanalyze the case study taken from a landfill site. The previous results achieved by Choi and Daniel (2006b) without consideration of filter cake have been compared with the results in this study. The considerable difference between the two results shows the necessity of considering the filter cake in practice.

  • PDF

Design of Vertical Drain in Consideration of Smear Effect and Well Resistance (교란효과와 배수저항을 고려한 연직 배수재 설계)

  • 이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.4
    • /
    • pp.115-123
    • /
    • 2000
  • This study compared the degree of consolidation by hyperbolic, curve fitting , Asaoka's and methods using values measured with a theoretical curve in consideration of smear effect and well resistance. The degree of consolidation by the Hyperboilc method was underestimated than the degree of consolidation by Curve fitting. Asaoka's , and Monden's methods. The typical range of the coefficient of horizontal consolidation was Ch=(2-3)Cv in the case considering smear effect and well resistance, and Ch =(0.5-2.1) Cv in the case disregarding smear effect and well resistance. The degree of consolidation obtained by ground settlement monitoring was nearly the same value when the coefficient of smear zone permeability by back analysis was shown to be half that of in-situ and the diameter of the smear zone was shown to be double that of mandrel. By increasing the diameter reduction ratio of the drain, the time of consolidation was delayed. The effect of well resistance showed that the case of a small coefficient of permeability was much more than in the case of a large coefficient of permeability . It was recommended that when designing diameter reduction of a drain, well resistance should be considered.

  • PDF