• Title/Summary/Keyword: In-situ deformation

Search Result 202, Processing Time 0.021 seconds

In-situ Determination of Structural Changes in Polyethylene upon Creep and Cyclic Fatigue Loading (크리프와 반복 피로하중에 의한 폴리에틸렌의 실시간 구조 변화)

  • Jeon, Hye-Jin;Ryu, Seo-Kgn;Pyo, Soo-Ho;Choi, Sun-Woong;Song, Hyun-Hoon
    • Polymer(Korea)
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2012
  • Long-term performance of polymer under constant sustained load has been the main research focus, which created a need for the accelerated test method providing proper lifetime assessment. Cycling fatigue loading is one of the accelerated test method and has been of great interest. Microstructure change of high density polyethylene under cyclic fatigue loading and creep was examined utilizing a tensile device specially designed for creep and fatigue test and also can be attachable to the X-ray diffractometer. In this way, the crystal morphology change of polyethylene under creep and cyclic fatigue load was successfully monitored and compared. Despite the marked differences in macroscopic deformation between the creep and cyclic fatigue tests, crystal morphology such as crystallinity, crystal size, and $d$-spacing was as nearly identical between the two test cases. Specimens pre-deformed to different strains, i.e., before yield point (BYP), at yield point (YP) and after yield point (AYP), however, showed markedly different changes in crystal morphology, especially between AYP and the other two specimens.

A displacement solution for circular openings in an elastic-brittle-plastic rock

  • Huang, Houxu;Li, Jie;Rong, Xiaoli;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.489-504
    • /
    • 2017
  • The localized shear and the slip lines are easily observed in elastic-brittle-plastic rock. After yielding, the strength of the brittle rock suddenly drops from the peak value to the residual value, and there are slip lines which divide the macro rock into numbers of elements. There are slippages of elements along the slip lines and the displacement field in the plastic region is discontinuous. With some restraints, the discontinuities can be described by the combination of two smooth functions, one is for the meaning of averaging the original function, and the other is for characterizing the breaks of the original function. The slip lines around the circular opening in the plastic region of an isotropic H-B rock which subjected to a hydrostatic in situ stress can be described by the logarithmic spirals. After failure, the deformation mechanism of the plastic region is mainly attributed to the slippage, and a slippage parameter is introduced. A new analytical solution is presented for the plane strain analysis of displacements around circular openings. The displacements obtained by using the new solution are found to be well coincide with the exact solutions from the published sources.

A Study on Experimental Method of Blasting Vibration in Curing Concrete (양생중인 콘크리트에서의 발파진동의 영향 시험방법에 대한 연구)

  • Kim, Jang-Deuk;Kim, Yong-Ha
    • The Journal of Engineering Geology
    • /
    • v.19 no.3
    • /
    • pp.417-422
    • /
    • 2009
  • Tunnels that have recently been constructed are characterized by longer length than ever before and furthermore they frequently go through the ground area with poor conditions such as fractured zones. If ground strength is weak, plastic deformation of tunnel occurs, and occasionally a big fall may be brought about. Up to now, the construction work of tunneling has been executed as a sequential method placing the lining concrete after completion of excavation. Such a method requires a long time and much money to complete the tunnel. It is hard to ensure the stability of tunnel if tunnel is left undone for a long time after excavation in fracture zones or plastic grounds. For this reason, we tried to take simultaneous construction of tunnel excavation and lining concrete in order to not only shorten construction schedule but also stabilize the tunnel at the highly fractures zone as soon as possible. As preliminary consideration for simultaneous construction, in-situ tests are performed to calculate the isolation distance over which blasting vibration does not influence the strength of lining concrete. Improvement of ling form, placing method of concrete, ventilation using a dust collector, together with equipment arrangement, was made to assure the simultaneous construction work.

Prediction of Ground-Condition Ahead of the Tunnel Face by Using 3-Dimensional Absolute Displacements (3차원 절대내공변위를 이용한 터널 막장전방의 지반면화 예측기법)

  • Lee, In-Mo;Gang, Gi-Don;Park, Gwang-Jun
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.17-32
    • /
    • 1998
  • has been much progress in theories and construction techniques to secure the stability of the underground structures. Recently, several studios have shown that it is possible to predict the existence of discontinuities ahead of a tunnel face by analyzing 3-dimensional absolute displacements measured during tunnel excavation. This paper concentrated on the development of a methodology to predict the existence and location of the discontinuities, or the void space(abandoned mine) , by performing 3-dimensional FEM analysis and considering the stress relocation caused by arching effect during excavation. Also, this study tried to verify deformation for choosing the most suitable support system. The results of this study might provide a way of safer and economical tunnel construction by utilizing the in-situ monitoring data.

  • PDF

Effect of K0-Consolidation in Behavior of Normally Consolidated Clay (정규압밀점토(正規壓密粘土)의 거동(擧動)에 미치는 K0-압밀효과(壓密効果))

  • Hong, Won Pyo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.183-193
    • /
    • 1987
  • After clay particles have been sedimented isotropically, the clay deposits have been consolidated under $K_0$-stress system. Therefore, in order to predict the behavior in-situ of normally consolidated clays, the effect of $K_0$-consolidation should be considered. A series of undrained and drained triaxial compression tests was performed on remolded specimens of clay consolidated under both $K_0$-and isotropic stress systems and the effect of $K_0$-consolidation was investigated. $K_0$-consolidation has much effect on the deviator stress, especially at initial deformation stage of consolidated-undrained tests, but has little effect on the principal effective stress ratio. Thus, the undrained strength behavior of $K_0$-consolidated samples can not be predicted from isotropically consolidated test data. However, the failure envelop, provided by the maximum principal effective stress ratio failure criterion, is unique and curved.

  • PDF

Stability Analysis of High Speed Railway Tunnel Passing Through the Abandoned Mine Area (폐광지역을 통과하는 고속철도터널의 안정성 평가)

  • 장명환;양형식;정소걸
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.147-154
    • /
    • 2000
  • The influence of the mined-out caves on the stability of the high speed railway tunnel was investigated with a series of geological logging and in-situ tests on the one hand, and with the rock mass classification using the multiple regression analysis on the other hand. The rock mass in this area can be classified as 'fair', and the condition of the discontinuities plays the most important role in the classification of the rock mass. The results of the analysis obtained by the FLAC showed that the western part of the tunnel locating at 50m above the mine cavities could be affected by subsidence associated with a considerable deformation, the magnitude of which might depend on the properties of the rock mass. Key word : multi regression analysis, subsidence, mine cavities

  • PDF

Influence of post-pouring joint on long-term performance of steel-concrete composite beam

  • Huang, Dunwen;Wei, Jun;Liu, Xiaochun;Zhang, Shizhuo;Chen, Tao
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.39-49
    • /
    • 2018
  • The concrete bridge decks are usually precast and in-situ assembled with steel girders with post-pouring joint in the construction practice of super-wide steel-concrete composite beam. But the difference of concrete age between the precast slabs and the post-pouring joint has been not yet considered for the long-term performance analysis of this kind composite beam. A simply supported precast-assembled T-shaped beam was taken as an example to analyze the long-term performance of steel-concrete composite beam with post-pouring joint. Based on the deformation coordination conditions of the old-new concrete deck and steel girder, a theoretical model for the long-term behavior of precast-assembled composite beam is proposed in this paper according to age-adjusted effective modulus method. Then, the feasibility of the proposed model is verified by the available test data from the Gilbert's composite beams. Parametric studies were preformed to evaluate the influences of the cross-sectional area ratio of the post-pouring joint to the whole bridge deck, as well as the difference of concrete age between the precast slabs and the post-pouring joint, on the long-term performance of the composite beam. The results indicate that the traditional method without considering the age difference would seriously underestimate the effect of creep and shrinkage of concrete bridge decks. The concrete age difference between the precast slabs and the post-pouring joint should be demonstrated for the life cycle design and long-term performance analysis of precast-assembled steel-concrete composite beams.

Evaluation of Construction Operation and Design Properties of CLSM for Corrugated Pipe in Underground (파형강관을 이용한 지하매설물용 뒤채움재 설계 및 시공성 평가)

  • Lee Kwan-Ho;Park Jae-Heon
    • International Journal of Highway Engineering
    • /
    • v.8 no.2 s.28
    • /
    • pp.63-74
    • /
    • 2006
  • During the construction of circular underground pipe, the non-proper compaction along the pipe and the decrease of compaction efficiency have been the main problems to induce the failure of underground pipe or facility. The use of CLSM (controlled low strength materials) should be one of the possible applications to overcome those problems. In this research, the full-scaled field test and the numeric analysis using PENTAGON-3D FEM program were carried out for three different cases on the change of backfill materials, including the common sand, the soil from construction site, and the CLSM. From the full-scaled test in field, the use of in-situ CLSM as backfill materials reduced the vertical and lateral deformation of the pipe, as well as the deformation of the ground surface. The main reason for reducing the deformation would be the characteristics of the CLSM, especially self-leveling and self-hardening properties. The measured earth pressure at the surround of the corrugated pipe using the CLSM backfills was the smaller than the other cases, and the absolute value was almost zero. Judging from the full-scaled field test and FEM analysis, the use of CLSM as backfill materials should be one of the best choices reducing the failure of the underground pipes.

  • PDF

Discrete element simulations of continental collision in Asia (아시아 대륙충돌의 개별요소 시뮬레이션)

  • Tanaka Atsushi;Sanada Yoshinori;Yamada Yasuhiro;Matsuoka Toshifumi;Ashida Yuzuru
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.1-6
    • /
    • 2005
  • Analogue physical modelling using granular materials (i.e., sandbox experiments) has been applied with great success to a number of geological problems at various scales. Such physical experiments can also be simulated numerically with the Discrete Element Method (DEM). In this study, we apply the DEM simulation to the collision between the Indian subcontinent and the Eurasian Plate, one of the most significant current tectonic processes in the Earth. DEM simulation has been applied to various kinds of dynamic modelling, not only in structural geology but also in soil mechanics, rock mechanics, and the like. As the target of the investigation is assumed to be an assembly of many tiny particles, DEM simulation makes it possible to treat an object with large and discontinuous deformations. However, in DEM simulations, we often encounter difficulties when we examine the validity of the input parameters, since little is known about the relationship between the input parameters for each particle and the properties of the whole assembly. Therefore, in our previous studies (Yamada et al.,2002a,2002b,2002c), we were obliged to tune the input parameters by trial and error. To overcome these difficulties, we introduce a numerical biaxial test with the DEM simulation. Using the results of this numerical test, we examine the validity of the input parameters used in the collision model. The resulting collision model is quite similar to the real deformation observed in eastern Asia, and compares well with GPS data and in-situ stress data in eastern Asia.

A Critical Review on Setting up the Concept, Timing and Mechanism of Tertiary Tilted Flexural Mode of the Korean Peninsula: A new hypothesis derived from plate tectonics ('신생대 제3기 경동성 요곡운동'의 개념, 시기, 기작에 관한 비판적 고찰: 판구조운동 기원의 새로운 가설)

  • Shin, Jaeryul;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.49 no.2
    • /
    • pp.200-220
    • /
    • 2014
  • This study reexamines the old concept and reviews prevalent statements on Cenozoic vertical motions of the peninsula that have been uncritically repeated in our academia. The contents of this paper are redefinition of the notion, tilted flexure or warping, and a suggestion for a new time set and properties of the deformation, followed by a new model on its influencing factors and processes. In conclusion, the Cenozoic vertical motion of the Korean peninsula can be reified further with an epeirogenic movement of uplift in the east side-subsidence in the west side of the peninsula since the Neogene (23 Ma). However, the regional boundary for areas of uplift and subsidence is not likely in the Korean peninsula but broader farther to East China and the southern part of Russia. It can be best understood that mantle convection produced by subducting activities in the Western Pacific Subduction Zone causes the uplift and subsidence of earth surface around NE Asia. In addition, faultings in the upper lithosphere induced by in-situ plate boundary stresses accelerate regional uplift in the peninsula since the Quaternary. Controversies that are still standing such as current uplift movements along the western coast of the peninsula during the late Quaternary could be precisely discussed with future research providing detailed information on it.

  • PDF