• Title/Summary/Keyword: In-situ capping

Search Result 31, Processing Time 0.026 seconds

Long-Term Effect of Consolidation on Contaminant Transport (압밀이 오염물질 이동에 미치는 장기적 영향)

  • Lee, Jang-Guen;Kim, Do-Yoon;Park, Jae-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • Dredging and disposal is a conventional method to remove contaminated sediments. However, there are some problems in dredging and disposal, such as disturbance of contaminated sediments, disposal site determination, and high construction cost. Recently, in-situ capping which overcomes the problems of dredging and disposal is widely applied to isolate local contaminated sites. Numerical studies, which have been conducted to simulate contaminant transport during in-situ capping, have been concerned mainly with diffusive transport. However, contaminated sediments experience large strain consolidation induced by self-weight because of initially high moisture content of sediments, and contaminant transport results from advection and diffusion. Previous studies focus on contaminant transport during consolidation, but have neglected consolidation effect on long-term contaminant transport in sediments. This study presents numerical simulation results of consolidation effect on long-term contaminant transport in sediments.

Application of Activated Carbon and Crushed Concrete as Capping Material for Interrupting the Release of Nitrogen, Phosphorus and Organic Substance from Reservoir Sediments (저수지 퇴적물에서 질소, 인 및 유기물질 용출차단을 위한 활성탄과 폐콘크리트의 피복재로서 적용)

  • Kang, Ku;Kim, Won-Jae;Park, Seong-Jik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • This study aims to assess the effectiveness of activated carbon (AC) and crushed concrete (CC) as capping material to block the release of nitrogen, phosphorus, and organic substance from reservoir sediments. The efficiency of AC and CC as capping material was evaluated in a reactor in which a 1 or 3 cm thick layer of capping materials was placed on the sediments collected from Mansu reservoir in Anseong-city. Dissolved oxygen (DO) concentration, total nitrogen (T-N), total phosphorus (T-P), and chemical oxygen demand (COD) concentration in reservoir water above the uncapped sediments and capping material were monitored for 45 days. The release rate of T-N was in the following increasing order: AC 3 cm ($1.18mg/m^2{\cdot}d$) < CC 1 cm ($2.66mg/m^2{\cdot}d$) < AC 1 cm ($2.94mg/m^2{\cdot}d$) < CC 3 cm ($3.42mg/m^2{\cdot}d$) < uncapped ($4.59mg/m^2{\cdot}d$). The release rate of T-P was in the following increasing order: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($0.03mg/m^2{\cdot}d$) < AC 1 cm capped ($0.07mg/m^2{\cdot}d$) < uncapped ($0.24mg/m^2{\cdot}d$). The release of nitrogen and phosphorus were effectively blocked by AC capping of 3 cm thickness, and CC capping of 3 cm thickness effectively controlled the release of phosphorus. The order of increasing COD release rate was as follows: AC 3 cm ($0mg/m^2{\cdot}d$) $${\approx_-}$$ CC 3 cm ($0mg/m^2{\cdot}d$) < CC 1 cm ($5.03mg/m^2{\cdot}d$) < AC 1 cm ($7.28mg/m^2{\cdot}d$) < uncapped ($10.05mg/m^2{\cdot}d$), indicating that AC and CC capping effectively interrupted the release of organic contaminants from the sediments. It was concluded that AC and CC could effectively block the release of T-N, T-P and COD release from contaminated reservoir sediments.

Performance Evaluation of Microorganisms Immobilized Reactive Capping Materials on Elution Blocking of Organic, Nitrogen, and Phosphorus Compounds (미생물이 고정화된 반응성 피복재의 유기물, 질소 및 인 용출 차단성능 평가)

  • Park, Hyungjin;Kim, Young-Kee
    • Journal of Korean Society on Water Environment
    • /
    • v.33 no.4
    • /
    • pp.409-415
    • /
    • 2017
  • This study aims to evaluate the effect of capping materials on blocking pollutant elution from contaminated sediment to water body. Experiments were carried out under conditions in which the elution rate was intensified artificially using compost with high concentration of organic compound and nutrient salts instead of sediments. Activated carbon (AC), modified activated carbon (MAC), P. putida immobilized activated carbon (PBAC) and effective microorganisms immobilized activated carbon (EBAC) were used as capping materials. Zeolite (ZT) and two kinds of commercially available microorganisms immobilized zeolite products (ZC, ZN) were used for comparison experiment. The elution rate of organic compound, nitrogen and phosphorus were compared with that of control experiment. The experiments were conducted for 56 days. Concentrations of chemical oxygen demand, total nitrogen, and total phosphorus were measured to use the comparison of release rate of organic compound, nitrogen and phosphorus. From the experimental results, AC based materials showed better performance to block the elution of organic compound and nitrogen than ZT based materials. Although ZT based materials were more effective than AC and PBAC to block phosphorus, MAC and EBAC showed the best performance of phosphorus elution blocking among the all candidate materials. In conclusion, EBAC is considered as the most effective capping materials, because organic compound, nitrogen and phosphorus will be degraded continuously by EM in the long term.

Management and Remediation Technologies of Contaminated Sediment (오염퇴적물 관리방향 및 처리공법)

  • Kim, Geon-Ha;Jeong, Woo-Hyeok
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.1-9
    • /
    • 2007
  • As Total Maximum Daily Load program is being implemented, needs for the management and treatment of contaminated sediment are rising to attain cleaner water resources. In this paper, impacts and management methods of contaminated sediment were reviewed. Remediation technologies for contaminated sediment including dredging, natural attenuation, in situ solidification/stabilization, in situ biological remediation, in situ chemical remediation and capping were reviewed. Integrated remediation scheme was presented as well.

Assesment of Zeolite, Montmorillonite, and Steel Slag for Interrupting Heavy Metals Release from Contaminated Marine Sediments for Capping Thickness of Reactive materials (오염된 해양퇴적물에서 중금속 용출 차단을 위한 제올라이트, 몬모릴로나이트, 제강슬래그의 적용성 평가)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Navigation and Port Research
    • /
    • v.39 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • This study aims to assess the effectiveness of zeolite, montmorillonite, and steel slag as capping materials to block the release of heavy metals from marine sediment depending on their depths. The results showed that all capping materials used this study were not effective in interrupting release of As. Zeolite had negative effect on the block of Cr release but it was significantly reduced to 5 cm by montmorillonite capping. In contrast to As and Cr, Cd, Ni, and Pb were not released even from uncapped sediments. Cu and Zn were the heavy metals those were most significantly influenced by the capping conditions. Cu release from marine sediments were effectively blocked by more than 1 cm depth of montmorillonite and more than 3 cm depth of zeolite. All capping materials were found to be effective in interrupting release of Zn from marine sediments. It was concluded that the zeolite, montmorillonite, and steel slag could be used as a potential capping material for interrupting the release of Cr, Cu, and Zn from the contaminated marine sediments.

Natural Zeolite and Sand Capping Treatment for Interrupting the Release of Cd, Cr, Cu, and Zn from Marine Contaminated Sediment and Stabilizing the Heavy Metals (오염된 해양퇴적물 내 Cd, Cr, Cu, Zn의 용출차단과 안정화를 위한 천연 제올라이트와 모래 피복의 적용)

  • Kang, Ku;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • We investigated the effectiveness of natural zeolite (NZ) and sand (SD) as a capping material to block the release of heavy metals (Cd, Cr, Cu, and Zn) from heavily contaminated marine sediments and stabilize these heavy metals in the sediments. The efficiency of NZ and SD for blocking trace metals was evaluated in a flat flow tank attached with an impeller to generate wave. 0, 10, 30, and 50 mm depth of NZ or SD were capped on the contaminated marine sediments and the metal concentration in seawater was monitored. After completion of flow tank experiments, sequential extractions of the metals in the sediment below the capping material were performed. The difference of pH, EC, and DO concentration between uncapped and capped condition was not significant. The release of cations including Cd, Cu, and Zn were effectively blocked by NZ and SD capping but the interruption of Cr release was observed only in 50 mm depth of SD capped condition. However, the stabilization of Cr in 50 mm depth of SD capped condition was not achieved when compared to uncapped condition. NZ and SD capping were effective for stabilizing Cd, Cu, and Zn in marine sediments. It is concluded that the use of NZ with SD as a capping material is recommended for blocking Cd, Cr, Cu, and Zn release and stabilizing them in contaminated marine sediments.

Applicability of Natural Zeolite with Different Cation Exchange Capacity as In-situ Capping Materials for Adsorbing Heavy Metals (중금속 흡착을 위한 원위치 피복소재로서 천연제올라이트의 양이온교환용량에 따른 적용성 평가)

  • Kang, Ku;Shin, Weon-Ho;Hong, Seong-Gu;Kim, Young-Kee;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • We investigated the efficiency of natural zeolite with different cation exchange capacity (CEC) as capping material for the remediation of marine sediments contaminated with heavy metals. Three different zeolite with high CEC (HCzeo, 163.74 cmolc/kg), medium CEC (MCzeo, 127.20 cmolc/kg), and low CEC (LCzeo, 70.62 cmolc/kg) were used. The surface area of the zeolite was in decreasing order: HCzeo ($59.43m^2/g$) > MCzeo ($52.10m^2/g$) > LCzeo ($10.12m^2/g$). The results of mineralogical composition obtained from X-ray diffraction (XRD) show that LCzeo was mainly composed of quartz and albite. In the XRD result of MCzeo and HCzeo, the peaks of clinoptilolite, heulandite, and mordenite were also observed along with that of quartz and albite. Sorption equilibrium onto the HCzeo, MCzeo, and LCzeo was reached in 6 h at initial concentration of 10 mg/L and 100 mg/L. Higher adsorption of Cd and Zn onto the zeolite with higher CEC were achieved but adsorption of Cu and Ni were not dependent on the CEC of zeolite. It can be concluded that the zeolite with high cation exchange ability is recommended for the contaminated sediments with Cd and Zn but the inexpensive zeolite with low CEC for Cu and Ni.

In-situ Stabilization of Hydrophobic Organic Contaminants in Sediment by Activated Carbon Amendment: Working Principles (활성탄 주입을 통한 퇴적물 내 소수성 유기오염물질 원위치 안정화 기술: 작동 원리)

  • LEE, Hyeonmin;JUNG, Jihyeun;CHOI, Yongju
    • Journal of Soil and Groundwater Environment
    • /
    • v.27 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • In-situ activated carbon (AC) amendment is a promising remediation technique for the treatment of sediment impacted by hydrophobic organic contaminants (HOCs). Since its first proposal in the early 2000s, the remediation technique has quickly gained acceptance as a feasible alternative among the scientific and engineering communities in the United States and northern Europe. This review paper aims to provide an overview on in-situ AC amendment for the treatment of HOC-impacted sediment with a major focus on its working principles. We began with an introduction on the practical and scientific background that led to the proposal of this remediation technique. Then, we described how the remediation technique works in a mechanistic sense, along with discussion on two modes of implementation, mechanical mixing and thin-layer capping, that are distinct from each other. We also discussed key considerations involved in establishing a remedial goal and performing post-implementation monitoring when this technique is field-applied. We concluded with future works necessary to adopt and further develop this innovative sediment remediation technique to ongoing and future sediment contamination concerns in Korea.

Application of Lime Stone, Sand, and Zeolite as Reactive Capping Materials for Marine Sediments Contaminated with Organic Matters and Nutrients (유기물 및 영양염류로 오염된 해양퇴적물 정화를 위한 석회석, 모래, 제올라이트의 반응성 피복 소재로서 적용성 평가)

  • Kang, Ku;Park, Seong-Jik
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.8
    • /
    • pp.470-477
    • /
    • 2017
  • In this study, the applicability of calcite, sand, and zeolite for the remediation of sediments contaminated with organics and nutrients were investigated. Sediments and seawater for water tank experiments were sampled from Pyeongtaek harbor, and 1 cm or 3 cm of calcite, sand, and zeolite were capped on the sampled sediments. pH, electric conductivity (EC), dissolved oxygen (DO), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) were monitored for 63 days. The sampled sediments were highly contaminated with organic matter and total nitrogen. DO in uncapped condition was exhausted within 10 days but DO in capping condition except 3 cm of zeolite capping was prolonged above 2 mg/L. Capping efficiency for interrupting COD release from sediments was in the following order: zeolite 1 cm > calcite 1 cm > calcite 3 cm > sand 3 cm ${\cong}$ zeolite 3 cm ${\cong}$ sand 1 cm. Zeolite was found to be effective for interrupting nitrogen release. T-P was not observed in both uncapped and capped sediment, i.e., all experimental conditions. It can be concluded that zeolite can be effectively used for the remediation of sediments highly contaminated with organic matter and nitrogen.