• Title/Summary/Keyword: In-process Electrolytic

Search Result 294, Processing Time 0.026 seconds

A Study on Control Disinfection By-products in High Sodium Hypochlorite Generation (고농도 차아염소산나트륨 발생장치의 소독부산물 제어에 관한 연구)

  • Cho, Haejin;Shin, Hyunsoo;Ko, Sungho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2017
  • Sodium hypochlorite used in water disinfection processes is generally in the production of chlorine to 0.8%. As the dose of chlorine increases, disinfection by-products (Chlorate) also increase simultaneously and exceed water quality standards. In this study, the electrolytic cell of a sodium hypochlorite generator (12% chlorine) was adjusted to control the production of the disinfection by-products. As a result, it was possible to reduce Chlorate concentrations by more than 95% by adjusting the pH of the electrolytic cell from 1.53 to 4.2 (normal pH of the electrolytic cell). As a low current is required to obtain these results, a 15% improvement in the efficiency of the positive electrode is also observed. For the development of High Sodium Hypochlorite Generation can be used in a safe sodium hypochlorite solution, which is expected to contribute to improvement in the safety of the disinfection process.

Effects of Electrolytic Alkali Water Washing on Mackerel (Scomber japonicus) Muscle Protein Heat Gel Rheology (고등어육 단백질 가열겔 물성에 대한 알카리 전해수세수 효과)

  • Lee, Nahm-Gull
    • Journal of Environmental Science International
    • /
    • v.21 no.2
    • /
    • pp.233-240
    • /
    • 2012
  • In this study, the alkiline water washing condition of mackerel(Scomber japonicus) dark meat was investigated to improve processing conditions of red muscle fish meat paste heating gel. Chemical alkaline water(CWM) and electrolytic alkiline water(EWM, pH 12) were used for washing the mackerel raw meat. Washed meats were minced with 2.5% salt and heated at $90^{\circ}C$/15 min to testing texture profile analysis. Moisture of CWM and EWM was increased with both washing times(p<0.05). Crude lipids and protiens were decreased with washing times. Lightness of chemical alkaline water washed mackerel heated paste gel(CWHPG) was higher than electrolytic alkaline water washed mackerel heated paste gel(EWHPG). Redness and yellowness were more decreased than control meats. Jelly strength of CWHPG and EWHPG was not increased more than 2 times wased meat and was increased with protein decrease. Texture profile analysis, max force1 of CWHPG and EWHPG was higher hardeness than the control meat except gel strains. From these results, it could be suggested that electric alkialine water washing is also effective in advance the red meat paste heating gel process of kamaboko industry.

HOT CELL RENOVATION IN THE SPENT FUEL CONDITIONING PROCESS FACILITY AT THE KOREA ATOMIC ENERGY RESEARCH INSTITUTE

  • YU, SEUNG NAM;LEE, JONG KWANG;PARK, BYUNG SUK;CHO, ILJE;KIM, KIHO
    • Nuclear Engineering and Technology
    • /
    • v.47 no.6
    • /
    • pp.776-790
    • /
    • 2015
  • Background: The advanced spent fuel conditioning process facility (ACPF) of the irradiated materials examination facility (IMEF) at the Korea Atomic Energy Research Institute (KAERI) has been renovated to implement a lab scale electrolytic reduction process for pyroprocessing. The interior and exterior structures of the ACPF hot cell have been modified under the current renovation project for the experimentation of the electrolytic reduction process using spent nuclear fuel. The most important aspect of this renovation was the installation of the argon compartment within the hot cell. Method: For the design and system implementation of the argon compartment system, a full-scale mock-up test and a three-dimensional (3D) simulation test were conducted in advance. The remodeling and repairing of the process cell (M8a), the maintenance cell (M8b), the isolation room, and their utilities were also planned through this simulation to accommodate the designed argon compartment system. Results and conclusion: Based on the considered refurbishment workflow, previous equipment in the M8 cell, including vessels and pipes, were removed and disposed of successfully after a zoning smear survey and decontamination, and new equipment with advanced functions and specifications were installed in the hot cell. Finally, the operating area and isolation room were also refurbished to meet the requirements of the improved hot cell facility.

Scaleup of Electrolytic Reactors in Pyroprocessing (Pyroprocessing 공정에 사용되는 전해반응장치의 규모 확대)

  • Yoo, Jae-Hyung;Kim, Jeong-Guk;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.237-242
    • /
    • 2009
  • In the pyroprocessing of spent nuclear fuels, fuel materials are recovered by electrochemical reactions on the surface of electrodes as well as stirring the electrolyte in electrolytic cells such as electrorefiner, electroreducer and electrowinner. The system with this equipment should first be scaled-up in order to commercialize the pyroprocessing. So in this study, the scale-up for those electrolytic cells was studied to design a large-scale system which can be employed in a commercial process in the future. Basically the dimensions of both electrolytic cells and electrodes should be enlarged on the basis of the geometrical similarity. Then the criterion of constant power input per unit volume, characterizing the fluid behavior in the cells, was introduced in this study and a calculation process based on trial-and-error methode was derived, which makes it possible to seek a proper speed of agitation in the electrolytic cells. Consequently examples of scale-up for an arbitrary small scale system were shown when the criterion of constant power input per unit volume and another criterion of constant impeller tip speed were respectively applied.

  • PDF

Decontamination of simulated radioactive metal waste by modified electrolytic Process with neutral salt electrolytes (개선된 중성염 진해공정을 이용한 모의 방사성 금속폐기물의 제염)

  • Lee, Ji-Hoon;Yuk, Wan-Yi;Yang, Ho-Yeon;Ha, Jong-Hyun
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.2
    • /
    • pp.95-100
    • /
    • 2002
  • Conventional and modified electrolytic decontamination experiment were performed in the 1.7 M solution of sodium sulfate and sodium nitrate tot decontamination of carbon steel as the simulated metal wastes which have been produced in large amounts from nuclear power plants. Anode ant cathode were used as inconel and titanium respective. The reaction time and temperature were 1 hr and $25^{\circ}C$ The analyses were performed of the characteristics such as weight loss arid thickness change of metal waste. suspended solid in electrolyte and SEM observation. In modified electrolyte decontamination system with increased current density ranged from 0.1 to $0.6A/cm^2$, the metal waste showed thickness changes of $0.48{\pm}0.005$ to $67.7{\pm}0.02{\mu}m$ in 1.7 M sodium sulfate and those of $0.06{\pm}0.005$ to $17.7{\pm}0.05{\mu}m$ in sodium nitrate. Metal waste in modified electrolyte decontamination system showed the thickness change of $9.8{\pm}0.01{\mu}m$ while it reacted up to $3.7{\pm}0.03{\mu}m$ in conventional system with $0.3 A/cm^2$ of current density and 1.7 M sodium sulfate. Decontamination efficiencies of modified electrolytic process ate much hither than that of conventional electrolytic process when both are applied to metal waste.

Analysis on Distribution Characteristics of Spent Fuel in Electrolytic Reduction Process (전해환원 공정에서의 사용후핵연료 분배 특성 분석)

  • Park, Byung Heung;Lee, Chul Soo
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.696-701
    • /
    • 2012
  • Non-aqueous processes have been developed for stable management and reuse of spent fuels. Nowadays, a plan for the management of spent fuel is being sought focusing on a non-aqueous process in Korea. Named as pyroprocessing, it includes an electrolytic reduction process using molten salt at high temperature for the spent fuels, which provides metallic product for a following electro-refining process. The electrolytic reduction process utilizes electrochemical reaction producing Li to convert oxides into metals in high temperature LiCl medium. Various kinds of elements in the spent fuels would be distributed in the system according to their respective reactivity with the reductant, Li, and the medium, LiCl. This study elucidates the reactions of the elements to understand the behavior of composite elements on the spent fuels by thermodynamic calculations. Uranium and transuranic are reduced into their metallic forms while rare-earth oxides, except for Eu, are stable against the reaction at a process temperature. This study also covers the tendency of reactions with respect to the temperature and, finally, estimates radioactivity and heat load on the distributed phases based on the reference spent fuel characteristics.

Development of Cylindrical Grinding Technology with Electrolytic In-process Dressing Method

  • Lee, Eung-Sug;Je, Tae-Jin;Hitoshi Ohmor
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.127-132
    • /
    • 2000
  • A highly efficient mirror surface grinding technology has been developed for hard and brittle materials various metal materials, by employing the ELID (electrolytic in-process dressing) grinding method using metal bonded grinding wheels. In this research, some typical applications of ELID-grinding for cylindrical grinding are introduced and the mirror grinding characteristics are investigated. Good results are obtained in the grinding of ceramics and tungsten carbide.

  • PDF

경취 재료의 ELID(Electrolytic In-Process Dressing) 경면 연삭 절단에 관한 연구

  • 김화영;안중환;부산대기계공학부
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.65-68
    • /
    • 1995
  • A slicing method by thin diamond blade is widely usd slicing of hard and brittle materials such as ceramics,glass and ferrite etc.. In this study, a new slicing system which realizes highly efficient and mirror surface slicing was developed by applying ELID-grinding with metallic bond diamond blades and its performance was evaluated. Hard and brittle materials such as ceramics,glass and ferrite were used as workpiece. Metallic bond diamond blades with grit sizes #325 and #2000 were used. Experimental results show that highly efficient slicing and good mirror surface can be successfully obtained using the developed slicing system with ELID features.

  • PDF

A Study on the Mirror-like machining of MgO Single Crystal with Optimum In-process Electrolytic Dressing System (최적 전해드레싱을 적용한 단결정 산화마그네슘(MgO)의 경면가공에 관한 연구)

  • 김정두
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.76-81
    • /
    • 1995
  • MgO single crystal is widely used as a the material of high temperature resistance, but is difficult to grind because of brittleness and crack generation. Therefore, superabrasive diamond wheel is required for mirror like grinding of this material. This study describes a newly proposed optimum in-process electrolytic dressing system for carrying out effective dressing of superbrasive diamond wheel. Using this system the grinding surface of MgO single crystal was improved, the grinding force was very l9ow and crack was removed. In conclusion, this system is good to obtain the efficient grinding and mirror-like grinding without crack of MgO single crystal.

  • PDF

Ultra Precision Machining of Machinable Ceramic by Electrolytic In-process Dressing (연속전해드레싱을 적용한 머신어블 세라믹의 초정밀 가공)

  • 원종구;이은상
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.223-226
    • /
    • 2002
  • Appropriate design/manufacturing conditions, to give outstanding material properties to the $Si_3$$N_4$-BN and AIN-BN based composite materials, will be investigated using the experimental design methods. Ultra-precision machinability of the developed ceramics will be systematically studied in the viewpoint of microstructure and material properties. Also, finite element methods will be applied to define basic principles to significantly improve machinability and various properties. Basic experiments will be performed to develop optimum ultra-precision machining technologies for the developed ceramics. For ultra-precision lapping machining, need to develop a ultra-precision lapping system, suitable metal bonded diamond wheel, and appropriate condition of ultra-precision lapping machining.

  • PDF