• 제목/요약/키워드: In-process Diagnosis

검색결과 1,588건 처리시간 0.029초

주성분 분석을 이용한 DAMADICS 공정의 이상진단 모델 개발 (Principal Component Analysis Based Method for a Fault Diagnosis Model DAMADICS Process)

  • 박재연;이창준
    • 한국안전학회지
    • /
    • 제31권4호
    • /
    • pp.35-41
    • /
    • 2016
  • In order to guarantee the process safety and prevent accidents, the deviations from normal operating conditions should be monitored and their root causes have to be identified as soon as possible. The statistical theories-based method among various fault diagnosis methods has been gaining popularity, due to simplicity and quickness. However, according to fault magnitudes, the scalar value generated by statistical methods can be changed and this point can lead to produce wrong information. To solve this difficulty, this work employs PCA (Principal Component Analysis) based method with qualitative information. In the case study of our previous study, the number of assumed faults is much smaller than that of process variables. In the case study of this study, the number of predefined faults is 19, while that of process variables is 6. It means that a fault diagnosis becomes more difficult and it is really hard to isolate a single fault with a small number of variables. The PCA model is constructed under normal operation data in order to get a loading vector and the data set of assumed faulty conditions is applied with PCA model. The significant changes on PC (Principal Components) axes are monitored with CUSUM (Cumulative Sum Control Chart) and recorded to make the information, which can be used to identify the types of fault.

렌즈 사출성형 공정 상태 특징 추출 및 진단 알고리즘의 개발 (A Development of Feature Extraction and Condition Diagnosis Algorithm for Lens Injection Molding Process)

  • 백대성;남정수;이상원
    • 한국정밀공학회지
    • /
    • 제31권11호
    • /
    • pp.1031-1040
    • /
    • 2014
  • In this paper, a new condition diagnosis algorithm for the lens injection molding process using various features extracted from cavity pressure, nozzle pressure and screw position signals is developed with the aid of probability neural network (PNN) method. A new feature extraction method is developed for identifying five (5), seven (7) and two (2) critical features from cavity pressure, nozzle pressure and screw position signals, respectively. The node energies extracted from cavity and nozzle pressure signals are also considered based on wavelet packet decomposition (WPD). The PNN method is introduced to build the condition diagnosis model by considering the extracted features and node energies. A series of the lens injection molding experiments are conducted to validate the model, and it is demonstrated that the proposed condition diagnosis model is useful with high diagnosis accuracy.

PLC로 제어되는 기계에서 Fault Tree를 효과적으로 생성하기 위한 LAT(Ladder Analysis Tool)개발 (LAT System for Fault Tree Generation)

  • 김선호;김동훈;김도연;한기상;김주한
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.442-445
    • /
    • 1997
  • A challenging activity in the manufacturing industry is to perform in real time the continuous monitoring of the process state, the situation assessment and identification of the problem on line and diagnosis of the cause and importance of the problem if he process does not work properly. This paper describes LAT(Ladder Analysis Tool) system for fault tree generation to improving the fault diagnosis of CNC machine tools. The system consists of 4 steps which can automatically ladder analysis from ladder diagram to two diagnosis function models. The two diagnostic models based on he ladder diagram is switching function model and step switching function model. This system tries to overcome diagnosis deficiencies present machine tool.

  • PDF

간호데이터베이스를 이용한 유방암환자의 간호진단, 간호중재, 간호결과 분류연계 (Linkages of nursing Diagnosis, Nursing Intervention and Nursing Outcome Classification of Breast Cancer Patients using Nursing Database)

  • 지미경;지성애
    • 간호행정학회지
    • /
    • 제9권4호
    • /
    • pp.651-661
    • /
    • 2003
  • Purpose: This is the descriptive research project of which purpose is to acquire the practice, research, and educational data by establishing the database after confirming, classifying, and relating the nursing diagnosis, nursing intervention, and nursing outcome of Breast cancer patients by using the Yoo Hyung-sook's(2001) related 3N database model as the tool. Method : The Nursing Data occurring on Breast cancer patients nursing process was mapped to nursing diagnosis of NANDA, nursing interventions of NIC, nursing outcomes of NOC the 3N database linkage database which is related with the nursing process that was developed by using Yoo Hyung-sook's(2001). Result : 1. The nursing diagnosis were totally 505, and 26 articles of the nursing diagnosis were applied among 149 nursing diagnosis classification systems. 2. As for the nursing intervention, 250 articles(5l.4%) of nursing intervention were applied among 486 nursing intervention classification systems. 3. Regarding the nursing outcome, 28 articles(1l.2%l of the nursing outcome were applied among 250 nursing outcome classification systems. Conclusion: The result of this research in which the relating among the nursing diagnosis, nursing intervention, and nursing outcome of Breast cancer patients by using 3N nursing database was established is thought to be applied in the research and practice as well as to be utilized in the lecture or practice of the nursing process.

  • PDF

주성분 분석과 서포트 벡터 머신을 이용한 폴리스티렌 중합 반응기 이상 진단 모델 개발 (The Development of a Fault Diagnosis Model Based on Principal Component Analysis and Support Vector Machine for a Polystyrene Reactor)

  • 정연수;이창준
    • Korean Chemical Engineering Research
    • /
    • 제60권2호
    • /
    • pp.223-228
    • /
    • 2022
  • 화학공정에서 의도되지 않게 발생하는 이상은 큰 사고를 유발할 수 있다. 이러한 문제를 해결하기 위해, 신속하게 이상의 원인을 감지하고 판별하는 이상 진단 모델이 필요하다. 하지만, 이상 진단을 연구하는 대부분 연구의 경우, 상용프로그램에서 공정 시뮬레이션을 이용하여 이상 데이터를 생성하고 이를 이용하여 연구한 방법론을 적용하고 있다. 이는 실제 공정상에서 이상을 포함하는 실제 데이터를 얻는 데 많은 제약이 있음을 의미한다. 본 연구에서는 실제 폴리스티렌 반응기에서 얻은 이상 데이터와 정상 데이터를 분석하여 적절한 이상 진단 모델을 설계하고자 하였다. 먼저, 정상 데이터를 분석하여 세 가지의 조업 모드가 존재함을 확인하였으며, 모드 판별을 위한 모델을 SVM (Support Vector Machine)을 이용하여 만들었다. 각 조업 모드 별로 PCA (Principal Component Analysis)를 이용하여 이상 진단 모델을 만들었으며, 실제 이상 데이터를 이용하여 계산한 결과 신속하게 이상을 진단할 수 있음을 확인하였다. 본 연구에서 제안한 모델을 통해, 실제 사고가 발생하는 경우 신속한 대처가 가능하며, 이는 잠재적인 손실의 감소에 기여할 수 있음을 의미한다.

Applications of DNA Microarray in Disease Diagnostics

  • Yoo, Seung-Min;Choi, Jong-Hyun;Lee, Sang-Yup;Yoo, Nae-Choon
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권7호
    • /
    • pp.635-646
    • /
    • 2009
  • Rapid and accurate diagnosis of diseases is very important for appropriate treatment of patients. Recent advances in molecular-level interaction and detection technologies are upgrading the clinical diagnostics by providing new ways of diagnosis, with higher speed and accuracy. In particular, DNA microarrays can be efficiently used in clinical diagnostics which span from discovery of diseaserelevant genes to diagnosis using its biomarkers. Diagnostic DNA microarrays have been used for genotyping and determination of disease-relevant genes or agents causing diseases, mutation analysis, screening of single nucleotide polymorphisms (SNPs), detection of chromosome abnormalities, and global determination of posttranslational modification. The performance of DNA-microarray-based diagnosis is continuously improving by the integration of other tools. Thus, DNA microarrays will play a central role in clinical diagnostics and will become a gold standard method for disease diagnosis. In this paper, various applications of DNA microarrays in disease diagnosis are reviewed. Special effort was made to cover the information disclosed in the patents so that recent trends and missing applications can be revealed.

스마트 헬스케어 서비스를 위한 통계학적 개인 맞춤형 질병예측 기법의 개선 (An Improvement of Personalized Computer Aided Diagnosis Probability for Smart Healthcare Service System)

  • 민병원
    • 중소기업융합학회논문지
    • /
    • 제6권4호
    • /
    • pp.79-84
    • /
    • 2016
  • 본 논문에서는 스마트 헬스케어 서비스 시스템의 바이오 데이터 분석 과정을 프로세스로 해석하기 위하여, 온톨로지 기반 통계학적 개인 맞춤형 질병예측 기법인 PCADP(Personalized Computer Aided Diagnosis Probability)를 제안하였다. 또한 이러한 개인 맞춤형 질병예측 기법을 바탕으로 스마트 헬스케어 데이터 및 헬스케어 서비스 명세의 의미 있는 표현을 위하여 헬스케어 온톨로지 프레임워크를 시맨틱스형으로 모델링하였다. PCADP 기법은 스마트 헬스케어 환경에서 개인 맞춤형 판별 기법이 갖추어야 할 조건인 실시간 처리, 유연한 구조, 판별과정의 모니터링, 지속적인 개선 등에 부합하는 통계학적 질병예측 기법임을 확인하였다.

인공지능을 도입한 간호정보시스템개발 (Development of a Nursing Diagnosis System Using a Neural Network Model)

  • 이은옥;송미순;김명기;박현애
    • 대한간호학회지
    • /
    • 제26권2호
    • /
    • pp.281-289
    • /
    • 1996
  • Neural networks have recently attracted considerable attention in the field of classification and other areas. The purpose of this study was to demonstrate an experiment using back-propagation neural network model applied to nursing diagnosis. The network's structure has three layers ; one input layer for representing signs and symptoms and one output layer for nursing diagnosis as well as one hidden layer. The first prototype of a nursing diagnosis system for patients with stomach cancer was developed with 254 nodes for the input layer and 20 nodes for the output layer of 20 nursing diagnoses, by utilizing learning data set collected from 118 patients with stomach cancer. It showed a hitting ratio of .93 when the model was developed with 20,000 times of learning, 6 nodes of hidden layer, 0.5 of momentum and 0.5 of learning coefficient. The system was primarily designed to be an aid in the clinical reasoning process. It was intended to simplify the use of nursing diagnoses for clinical practitioners. In order to validate the developed model, a set of test data from 20 patients with stomach cancer was applied to the diagnosis system. The data for 17 patients were concurrent with the result produced from the nursing diagnosis system which shows the hitting ratio of 85%. Future research is needed to develop a system with more nursing diagnoses and an evaluation process, and to expand the system to be applicable to other groups of patients.

  • PDF

Fuzzy Inference in Medical Diagnosis

  • Kim, Soon-Ki
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 1995년도 추계학술대회 학술발표 논문집
    • /
    • pp.92-97
    • /
    • 1995
  • In medical diagnostic process we are dealing with the preliminary diagnosis based on the interview chart. We will quantify the qualitative information of a patient by dual scaling and establish both prototypes of fuzzy diagnostic sets and the fuzzy linear regressions. Its utility is shown in the diagnosis of headache and CAFDDH.

  • PDF

대용량 로그 데이터 처리를 위한 분산 실시간 자가 진단 시스템 (A Distributed Real-time Self-Diagnosis System for Processing Large Amounts of Log Data)

  • 손시운;김다솔;문양세;최형진
    • 데이타베이스연구회지:데이타베이스연구
    • /
    • 제34권3호
    • /
    • pp.58-68
    • /
    • 2018
  • 분산 컴퓨팅이란 다수의 서버로 구성된 분산 시스템에서 데이터를 효율적으로 저장 및 처리하는 기술이다. 따라서 분산 시스템을 구성하는 서버의 상태에 따라 분산 컴퓨팅의 성능에 큰 영향을 미친다. 본 논문은 분산 시스템에서 실시간으로 발생하는 시스템 자원의 로그 데이터를 수집하고 이상을 탐지하여 결과를 시각화하는 자가 진단 시스템을 제안한다. 먼저, 자가 진단 과정을 수집, 전달, 분석, 저장, 시각화의 다섯 단계로 구분한다. 다음으로, 자가 진단 과정이 실시간성, 확장성, 고가용성의 목표를 만족하도록 실시간 자가 진단 시스템을 설계한다. 본 시스템은 대표적인 실시간 분산 기술인 Apache Flume, Apache Kafka, Apache Storm을 기반으로 구현되어 실시간성, 확장성, 고가용성의 세 가지 목표를 만족할 수 있다. 또한, 자가 진단 과정에서 로그 데이터 처리의 지연을 최소화하도록 간단하지만 효과적인 이동 평균 및 3-시그마 기반 이상 탐지 기법을 사용한다. 본 논문의 결과를 통해, 분산 시스템 내에서 서버 상태를 실시간으로 진단할 수 있는 분산 실시간 자가 진단 시스템을 구축할 수 있다.