• Title/Summary/Keyword: In-plane variation

Search Result 536, Processing Time 0.035 seconds

Variation simulation and diagnosis considering in-plane/out-of-plane welding distortion

  • Lee, Hyeonkyeong;Chung, Hyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.1
    • /
    • pp.553-571
    • /
    • 2019
  • Geometric variation including welding distortion accumulates as many parts are joined together, ultimately affecting the final product. This variation is then subjected to correction, which requires considerable effort, time, and cost. This variation can be categorized as in-plane/out-of-plane variation. To date, studies on variation simulation have largely focused on the out-of-plane variation, however the variation generated in the in-plane direction requires more time and efforts to correct afterwards. This research aims to construct a variation simulation model considering both the in-plane and out-of-plane variations. A geometric analysis was performed to derive an equation that reflects the coupling effect of the out-of-plane variation on the in-plane variation. The proposed model is validated with case study analysis and the results shows that good fidelity in predicting and diagnosing the in-plane variation during the block assembly process considering welding distortion.

A Study on the Improvement of the IM Speed Control Characteristics with Load Torque Variation (부하 변동에 대한 유도 전동기의 속도 제어 특성에 관한 연구)

  • 강문호;김남정;유기윤;박귀태;민경일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1075-1083
    • /
    • 1994
  • In this paper, a study on the improvement of the IM speed response against load torque variation is presented. A VSCS(Variable Structure Control System) is proposed which gives the desired robustness against load torque variation using a new kind of time-varing switching plane. In order to eliminate the reaching phase of the states from one switching plane to another during variation, the switching plane is varied continuously. To verify the high dynamic performance of the proposed VSCS, simulation and experimental results are presented.

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

A Four-Variable First-Order Shear Deformation Theory Considering the Variation of In-plane Rotation of Functionally Graded Plates

  • Park, Minwo;Choi, Dong-Ho
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1265-1283
    • /
    • 2018
  • This paper presents a four-variable first-order shear deformation theory considering in-plane rotation of functionally graded plates. In recent studies, a simple first-order shear deformation theory was developed and extended to functionally graded plates. It has only four variables, separating the deflection into bending and shear parts, while the conventional first-order shear deformation theory has five variables. However, this simple first-order shear deformation theory only provides good predictions for simply supported plates since it does not consider in-plane rotation varying through the thickness of the plates. The present theory also has four variables, but considers the variation of in-plane rotation such that it is able to correctly predict the responses of the plates with any boundary conditions. Analytical solutions are obtained for rectangular plates with various boundary conditions. Comparative studies demonstrate the effects of in-plane rotation and the accuracy of the present theory in predicting the responses of functionally graded plates.

Analysis of Infinite Periodic Frequency Selective Surface using Method of Moment (모멘트법을 이용한 주기적 배열을 갖는 무한 크기의 주파수선택 표면(FSS) 해석)

  • 강봉수;강부식;김흥수
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.290-293
    • /
    • 2003
  • In this paper, infinite frequency selective surface comprised with rectangular plates which are arranged periodically is analyzed using Method of Moment based on Galerkin's method. In analysis, it is assumed that the plates are infinite thin perfect conductors. Based on this assumption, the reflection characteristics of the FSS is compared according to the polarization of plane-wave and the direction of incidence. In the results, the variation of reflection characteristics of the FSS highly depends on the direction of incidence when the polarization of the plane-wave is parallel to the plane of incidence, but the variation is nearly independent upon direction of incidence when the polarization of the plane-wave is perpendicular to the plane of incidence.

  • PDF

Printed Reflectarray Antenna Design for Parabolic Reflector Volume Reduction (파라볼릭 반사기 체적 축소용 프린트 리플렉트어레이 안테나 설계)

  • Moon, Sang-Man;Kim, In-Kyu
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.140-146
    • /
    • 2013
  • In this study, we discuss about the printed reflectarray antenna design for parabolic reflector volume reduction. For this, we simulated and measured the phase characteristics of the unit array element of reflectarray antenna using waveguide simulator. As a results, the maximum phase variation is $298^{\circ}$ by simulation, the average phase variation is $309^{\circ}$ by measurement in 10GHz. And the printed Reflectarray antenna gain is 28.3dBi, 3dB beamwidth is E-plane $5.1^{\circ}$, H-plane $5.2^{\circ}$, sidelobe level is E-plane -11.4dB, H-plane -17.6dB.

The Variation in Chromaticity of Optical System having the Truncated Incident Beam (입사광의 단락된 정도에 따른 광학계의 색도 변화)

  • Park, Seong Jong;Chung, Chang Sub;Sim, Sang Hyun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.13-18
    • /
    • 2000
  • In this paper, we use the C light which is a daylight and consider the incident beam having the Gaussian amplitude. We investigated the illuminance distributions and the variation in chromaticity of optical system having the truncated Gaussian amplitude on the focal plane and along the optical axis using the C light source. We also use the three sensitivity functions of human eye(CIE 1931) for wavelengths which are from 380nm to 780nm. When the truncation grade of incident beam having Gaussian amplitude decreases, the size of central spot on the focal plane and the depth of focus along the optical axis decrease, and the variation in chromaticity on the focal plane and along the axis increases rapidly. As the illuminance on the focal plane decreases the variation in chromaticity of optical system increases rapidly, and as the depth of focus increases the variation in chromaticity of optical system decreases.

  • PDF

Effects of a Metal Plane on a Meandered Slot Antenna for UHF RFID Applications

  • Kim, Ji-Kwon;Oh, Il-Young;Koo, Tae-Wan;Kim, Jun-Chul;Kim, Dong-Su;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.2
    • /
    • pp.176-184
    • /
    • 2012
  • In this paper, the effects of a metal plane on the performance of a meandered slot RFID antenna are evaluated in a real environment, and 3 metal plane cases are considered (the most likely scenarios in which metal conductive materials are placed near the tag antenna). The metal plane effects can be categorized as matching degradation and antenna gain variation. First, matching degradation due to the antenna's induced mutual impedance is experimentally investigated. In addition, the gain variation is investigated to figure out the change in the radiation characteristics. With the derived antenna parameters, the read range is calculated with the Friis transmission equation and measured to analyze the effects of a metal plane on RFID system performance. The calculated and measured read range varies from 9.3 m to 19.1 m as the distance between the RFID antenna and the metal plane changes.

The Design of a Wideband E-plane Phased Array Antenna using W/G Simulator (도파관 시뮬레이터를 이용한 광대역 E-평면 넛치 위상 배열 안테나 설계)

  • 김준연;소준호;임중수
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2003
  • Notch Antenna is a travelling wave type antenna and can provide multioctave operation in phased arrays that scan over wide angle. In this paper, we designed a wideband E-plane phased array antenna using E-plane waveguide simulator which has a bandwidth of 3 : 1 and a scan volume of $\pm$45$^{\circ}$ in E-plane. We compared impedance of single antenna and infinite array antenna using equivalent circuit modeling. We analyzed full structure of 1$\times$9 phased array antenna and we evaluated active reflection coefficient with variation of beam scan angle through mutual coupling coefficient acquired from simulation and investigated the variation of antenna gain with variation of active element pattern as beam scan angle is varied.

Characteristics of Inclined Plane Constructed by High speed Ball End Milling according to the Variation of Cutting Direction(I) (공구경로 변화에 따른 고속 볼 엔드밀 가공에서 경사면의 특성(I))

  • 강명창
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.2
    • /
    • pp.137-143
    • /
    • 1999
  • The study of the high speed machining of inclined plane using ball end mill is performed. The use of ball end mill is rapidly growing in die and mold manufacturing. The cutting characteristics, such as cuttin g force, surface roughness and surface profile, are varied according to the variation of cutting directions. Free surface is cut using ball end mill, the surface profile is greatly varied depending upon the cutting direction. So this study will deal with the characteristics of cutting such as cutting efficiency according to the inclined plane of the workpiece, the cutting force according to tool path, surface profile and the roughness of surface. The optimal cutting direction to be applied the cutting for 3-D sculptured surfaces can be show through the results of this study.

  • PDF