• Title/Summary/Keyword: In-plane shear loading

Search Result 159, Processing Time 0.02 seconds

The buckling of rectangular plates with opening using a polynomial method

  • Muhammad, T.;Singh, A.V.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.2
    • /
    • pp.151-168
    • /
    • 2005
  • In this paper an energy method is presented for the linear buckling analysis of first order shear deformable plates. The displacement fields are defined in terms of the shape functions, which correspond to a set of predefined points and are composed of significantly high order polynomials. The locations of these points are found by mapping the geometry using the naturalized coordinates and bilinear shape functions. In order to evaluate the method, fully clamped and simply supported rectangular plates subjected to uniform uniaxial compressive loading on two opposite edges of the plate are investigated thoroughly and the results are compared with the exact solution given in the monograph of Timoshenko and Gere (1961). The method is extended to the analysis of perforated plates, wherein the negative stiffness computed over the opening area from in-plane and out-of-plane deformation modes is superimposed to the stiffness of the full plate. Numerical results are then favorably compared with those obtained by finite element methods. Other cases such as; rectangular plates with eccentrically located openings of different shapes are studied and reported in this paper with regards to the effect of aspect ratio, hole size, and hole position on the buckling. For a square plate with a large circular opening at the center, diameter being 80 percent of the length, the present method yields buckling coefficient 12.5 percent higher than the one from the FEM.

A total strain-based hysteretic material model for reinforced concrete structures: theory and verifications

  • Yun, Gun-Jin;Harmon, Thomas G.;Dyke, Shirley J.;So, Migeum
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.217-241
    • /
    • 2008
  • In this paper, a total strain-based hysteretic material model based on MCFT is proposed for non-linear finite element analysis of reinforced concrete structures. Although many concrete models have been proposed for simulating behavior of structures under cyclic loading conditions, accurate simulations remain challenging due to uncertainties in materials, pitfalls of crude assumptions of existing models, and limited understanding of failure mechanisms. The proposed model is equipped with a fully generalized hysteresis rule and is formulated for 2D plane stress non-linear finite element analysis. The proposed model has been formulated in a tangent stiffness-based finite element scheme so that it can be used for most general finite element analysis packages. Moreover, it eliminates the need to check that tensile stresses can be transmitted across a crack. The tension stiffening model is a function of the bar orientation and any orientation can be accommodated. The proposed model has been verified with a series of experimental results of 2D RC planar panels. This study also demonstrates how parameters of the proposed model associated with cyclic damage modeling influences the pinched cyclic shear behavior.

Fatigue Design of Various Type Spot Welded Lap Joints Using the Maximum Stress

  • Jung, Wonseok;Bae, Dongho;Sohn, Ilseon
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.106-113
    • /
    • 2004
  • Recently, a new issue in designing spot welded structures such as automobile and train car bodies is to predict an economical fatigue design criterion. One of the most typical and traditional methods is to use a ΔP-N$\sub$f/ curve. However, since the fatigue data on the ΔP-N$\sub$f/ curve vary according to the welding conditions, materials, geometry of joint and fatigue loading conditions, it is necessary to perform the additional fatigue tests for determining a new fatigue design criterion of spot-welded lap joint having specific dimension and geometry. In this study, the stress distributions around spot welds of various spot welded lap joints such as in-plane bending type (IB type), tension shea. type (TS type) and cross tension type (CT type) were numerically analyzed. Using these results, the ΔP-N$\sub$f/ curves Previously obtained from the fatigue tests for each type were rearranged into the Δ$\sigma$-N$\sub$f/ relations with the maximum stresses at the nugget edge of the spot weld.

Numerical simulation of an external prestressing technique for prestressed concrete end block

  • Murthy, A. Rama Chandra;Ganapathi, S. Chitra;Saibabu, S.;Lakshmanan, N.;Jayaraman, R.;Senthil, R.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2009
  • This paper presents the details of finite element (FE) modeling and analysis of an external prestressing technique to strengthen a prestressed concrete (PSC) end block. Various methods of external prestressing techniques have been discussed. In the proposed technique, transfer of external force is in shear mode on the end block creating a complex stress distribution. The proposed technique is useful when the ends of the PSC girders are not accessible. Finite element modeling issues have been outlined. Brief description about material nonlinearity including key aspects in modeling inelastic behaviour has been provided. Finite element (FE) modeling including material, loading has been explained in depth. FE analysis for linear and nonlinear static analysis has been conducted for varying external loadings. Various responses such as out-of-plane deformation and slip have been computed and compared with the corresponding experimental observations. From the study, it has been observed that the computed slope and slip of the steel bracket under external loading is in good agreement with the corresponding experimental observations.

Shear Strength and Failure Mode of Architectural Masonry Walls (내진보강된 치장조적벽의 파괴특성과 전단강도)

  • Jin, Hee-Yong;Han, Sang-Whan;Park, Young-Mi
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.89-92
    • /
    • 2008
  • This study investigates the shear behavior of architectural masonry veneer wall reinforced with specific reinforcement details proposed by this study. For this purpose, experimental tests were conducted using one un-reinforced masonry(URM) wall specimen and three reinforced masonry(RM) wall specimens under quasi static cyclic loads. Un-reinforced(plain) masonry wall is expressed that behavior and failure mode are different for aspect ratio(L/H) and axial compressive force. The test variables are wall aspect ratio and presence of reinforcement. These specimens are masonry structure for architectural clading that is not to exist the axial compressive force. thus the axial compressive force is excepted from test variable. Test result, Behavior of specimens are dominated over rocking mode, but final failure modes are combined with different behaviors. And FEMA273 has proposed the equation of shear strength of masonry pier subjected to in-plane loading. Shear strength equations are classified four types of failure mode that is Rocking, and Toe-Crushing, Bed-Joint-Sliding and Diagonal-Tension. FEMA273 equations predict the behavior modes well, but shear strength is shown in different result.

  • PDF

Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method

  • Mokhatar, S.N.;Sonoda, Y.;Kueh, A.B.H.;Jaini, Z.M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.917-938
    • /
    • 2015
  • The nonlinear numerical analysis of the impact response of reinforced concrete/mortar beam incorporated with the updated Lagrangian method, namely the Smoothed Particle Hydrodynamics (SPH) is carried out in this study. The analysis includes the simulation of the effects of high mass low velocity impact load falling on beam structures. Three material models to describe the localized failure of structural elements are: (1) linear pressure-sensitive yield criteria (Drucker-Prager type) in the pre-peak regime for the concrete/mortar meanwhile, the shear strain energy criterion (Von Mises) is applied for the steel reinforcement (2) nonlinear hardening law by means of modified linear Drucker-Prager envelope by employing the plane cap surface to simulate the irreversible plastic behavior of concrete/mortar (3) implementation of linear and nonlinear softening in tension and compression regions, respectively, to express the complex behavior of concrete material during short time loading condition. Validation upon existing experimental test results is conducted, from which the impact behavior of concrete beams are best described using the SPH model adopting an average velocity and erosion algorithm, where instability in terms of numerical fragmentation is reduced considerably.

Analysis of Shear Characteristics of Angle-Ply Laminates with Non-woven Tissue by FEM (FEM에 의한 부직포 삽입 예각 적층판의 전단특성 해석)

  • 이승환;정성균
    • Korean Journal of Crystallography
    • /
    • v.13 no.2
    • /
    • pp.69-72
    • /
    • 2002
  • The interlaminar problems near the free edge of composite laminates are analyzed in this paper. CFRP specimen ([+40/-40]s) and interleaved specimen ([+40//-40]s) with non-woven carbon tissue (NWCT) are discussed under tensile loading condition. The symbol “//”means that the NWCT is located between the CFRP interfaces. The NWCT has carbon short fibers which are discretely distributed with the in-plane random orientation. It was reported/sup 3)/ that the Mode Ⅱ interlaminar fracture toughness of CFRP laminates with NWCT is increased largely and the Mode I interlaminar fracture toughness is not changed significantly. Mode Ⅲ interlaminar fracture toughness is also an important factor in composite structures. But it is not easy to experimentally investigate the Mode Ⅲ interlaminar fracture toughness. The objective of this work is to study the effect of the NWCT and to fundamentally understand the Mode Ⅲ interlaminar shear characteristics of laminated composites with NWCT in the vicinity of a free edge by using finite element method analysis.

Concrete filled double skin square tubular stub columns subjected to compression load

  • Uenaka, Kojiro
    • Structural Engineering and Mechanics
    • /
    • v.77 no.6
    • /
    • pp.745-751
    • /
    • 2021
  • Concrete filled double skin tubular members (CFDST) consist of double concentric circular or square steel tubes with concrete filled between the two steel tubes. The CFDST members, having a hollow section inside the internal tube, are generally lighter than ordinary concrete filled steel tubular members (CFT) which have a solid cross-section. Therefore, when the CFDST members are applied to bridge piers, reduction of seismic action can be expected. The present study aims to investigate, experimentally, the behavior of CFDST stub columns with double concentric square steel tubes filled with concrete (SS-CFDST) when working under centric compression. Two test parameters, namely, inner-to-outer width ratio and outer square steel tube's width-to-thickness were selected and outer steel tube's width-to-thickness ratio ranging from 70 to 160 were considered. In the results, shear failure of the concrete fill and local buckling of the double skin tubes having largest inner-to-outer width ratio were observed. A method to predict axial loading capacity of SS-CFDST is also proposed. In addition, the load capacity in the axial direction of stub column test on SS-CFDST is compared with that of double circular CFDST. Finally, the biaxial stress behavior of both steel tubes under plane stress is discussed.

Analysis of Interfacial Surface Crack Perpendicular to the Surface (표면에 수직한 계면방향 표면균열의 해석)

  • 최성렬
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.277-284
    • /
    • 1993
  • Interfacial surface crack perpendicular to the surface, which is imbedded into bonded quarter planes under single anti-plane shear load is analyzed. The problem is formulated using Mellin transform, form which single Wiener-Hopf equation is derived. By solving the equation stress intensity factor is obtained in closed form. This solution can be used as a Green's function to generate the solutions of other problems with the same geometry but of different loading conditions.

Investigation of the Stress Distributions in a Transversely Isotropic Medium Containing a Spheroidal Cavity (구형 공동을 가진 횡 방향 등방성매체의 응력 분포에 관한 연구)

  • 이윤복;전종균
    • Computational Structural Engineering
    • /
    • v.10 no.1
    • /
    • pp.159-171
    • /
    • 1997
  • This study investigates the stress distribution in a transversely isotropic medium containing a spheroidal cavity where the medium is under uniaxial tension in z-direction in one case and pure shear in the plane of isotropy in another case. The technical approach used in this study combines exact analytical and numerical methods. The exact analytical method is based upon three potential functions taken in terms of the Legendre associated functions of the first and second kind. The numerical method is based upon the finite difference approach. Numerical results concerning the two loading conditions with five anisotropic materials are presented.

  • PDF