• 제목/요약/키워드: In-plane compression

검색결과 331건 처리시간 0.025초

Experimental and numerical investigations on remaining strengths of damaged parabolic steel tubular arches

  • Huang, Yonghui;Liu, Airong;Pi, Yong-Lin;Bradford, Mark A.;Fu, Jiyang
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.1-15
    • /
    • 2020
  • This paper presents experimental and numerical studies on effects of local damages on the in-plane elastic-plastic buckling and strength of a fixed parabolic steel tubular arch under a vertical load distributed uniformly over its span, which have not been reported in the literature hitherto. The in-plane structural behaviour and strength of ten specimens with different local damages are investigated experimentally. A finite element (FE) model for damaged steel tubular arches is established and is validated by the test results. The FE model is then used to conduct parametric studies on effects of the damage location, depth and length on the strength of steel arches. The experimental results and FE parametric studies show that effects of damages at the arch end on the strength of the arch are more significant than those of damages at other locations of the arch, and that effects of the damage depth on the strength of arches are most significant among those of the damage length. It is also found that the failure modes of a damaged steel tubular arch are much related to its initial geometric imperfections. The experimental results and extensive FE results show that when the effective cross-section considering local damages is used in calculating the modified slenderness of arches, the column bucking curve b in GB50017 or Eurocode3 can be used for assessing the remaining in-plane strength of locally damaged parabolic steel tubular arches under uniform compression. Furthermore, a useful interaction equation for assessing the remaining in-plane strength of damaged steel tubular arches that are subjected to the combined bending and axial compression is also proposed based on the validated FE models. It is shown that the proposed interaction equation can provide lower bound assessments for the remaining strength of damaged arches under in-plane general loading.

Effect of lateral restraint on the buckling behaviour of plates under non-uniform edge compression

  • Bedair, Osama K.
    • Structural Engineering and Mechanics
    • /
    • 제5권1호
    • /
    • pp.85-104
    • /
    • 1997
  • The paper investigates the influence of lateral restraint on the buckling behaviour of plate under non-uniform compression. The unloaded edges are assumed to be partially restrained against translation in the plane of the plate and the distributions of the resulting forces acting on the plate are shown. The stability analysis is done numerically using the Galerkin method and various strategies the economize the numerical implementation are presented. Results are obtained showing the variation of the buckling load, from free edge translation to fully restrained, with unloaded edges simply supported, clamped and partially restrained against rotation for various plate aspect ratios and stress gradient coefficients. An apparent decrease in the buckling load is observed due to these destabilizing forces acting in the plate and changes in the buckling modes are observed by increasing the intensity of the lateral restraint. A comparison is made between the budding loads predicted from various formulas in stability standards based on free edge translation and the values derived from the present investigation. A difference of about 34% in the predicted buckling load and different buckling mode were found.

3차원 결정소성 유한요소해석을 통한 변형 집합조직 예측 (Prediction of Deformation Texture Based on a Three-Dimensional Crystal Plasticity Finite Element Method)

  • 정경환;김동규;임용택;이용신
    • 소성∙가공
    • /
    • 제21권4호
    • /
    • pp.252-257
    • /
    • 2012
  • Crystallographic texture evolution during forming processes has a significant effect on the anisotropic flow behavior of crystalline material. In this study, a crystal plasticity finite element method (CPFEM), which incorporates the crystal plasticity constitutive law into a three-dimensional finite element method, was used to investigate texture evolution of a face-centered-cubic material - an aluminum alloy. A rate-dependent polycrystalline theory was fully implemented within an in-house program, CAMPform3D. Each integration point in the element was considered to be a polycrystalline aggregate consisting of a large number of grains, and the deformation of each grain in the aggregate was assumed to be the same as the macroscopic deformation of the aggregate. The texture evolution during three different deformation modes - uniaxial tension, uniaxial compression, and plane strain compression - was investigated in terms of pole figures and compared to experimental data available in the literature.

고온변형 중의 AZ80 마그네슘합금의 집합조직 형성거동에 영향을 미치는 변형속도의 영향 (The Effect of Strain Rate on Texure Formation Behaviors in AZ80 Magnesium Alloy)

  • 배상대
    • 열처리공학회지
    • /
    • 제33권6호
    • /
    • pp.296-302
    • /
    • 2020
  • Magnesium alloys have been rapidly attracting as lightweight structural material in various industry fields because of having high specific strength and low density. It is well known that the crystallographic texture plays an important role in improvement of poor room temperature ductility of magnesium alloys. In this study, high-temperature plane strain compression deformation was conducted on extruded AZ80 magnesium alloy at 723K by varying the strain rates ranging from 5.0×10-3s-1 to 5.0×10-2s-1 in order to investigate the behaviors of texture formation. It was found that texture formation behaviors in three kinds of specimens were affected by continuous and discontiuous deformation mechanism.

Analysis of corrugated board panels under compression load

  • Biancolini, M.E.;Brutti, C.;Porziani, S.
    • Steel and Composite Structures
    • /
    • 제9권1호
    • /
    • pp.1-17
    • /
    • 2009
  • This paper is focused on the buckling and post buckling behaviour of rectangular corrugated board panels simply supported and subjected to compression load. The aim of the work is to understand the failure mechanism of investigated structure in order to quantify the effect of design parameters on the strength of a panel of given geometry. Two numerical models were developed adopting the finite element method. In the first one the corrugated board is represented by means of shell elements adopting an equivalent material, in the second the local structure is described in full detail modelling both straight and corrugated layers by means of shell elements and representing the connection between layers by special interface elements. The model correctness was checked by the comparison between out of plane central displacement predicted by the models and the experimental values found in literature. For the same case the effect of panel planarity error was evaluated. Finally a parametric analysis to investigate the effect of design parameters was carried out.

Alternative approach for reproducing the in-plane behaviour of rubble stone walls

  • Tarque, Nicola;Camata, Guido;Benedetti, Andrea;Spacone, Enrico
    • Earthquakes and Structures
    • /
    • 제13권1호
    • /
    • pp.29-38
    • /
    • 2017
  • Stone masonry is one of the oldest construction types due to the natural and free availability of stones and the relatively easy construction. Since stone masonry is brittle, it is also very vulnerable and in the case of earthquakes damage, collapses and causalities are very likely to occur, as it has been seen during the last Italian earthquake in Amatrice in 2016. In the recent years, some researchers have performed experimental tests to improve the knowledge of the behaviour of stone masonry. Concurrently, there is the need to reproduce the seismic behaviour of these structures by numerical approaches, also in consideration of the high cost of experimental tests. In this work, an alternative simplified procedure to numerically reproduce the diagonal compression and shear compression tests on a rubble stone masonry is proposed within the finite element method. The proposed procedure represents the stone units as rigid bodies and the mortar as a plastic material with compression and tension inelastic behaviour calibrated based on parametric studies. The validation of the proposed model was verified by comparison with experimental data. The advantage of this simplified methodology is the use of a limited number of degrees of freedom which allows the reduction of the computational time, which leaves the possibility to carry out parametric studies that consider different wall configurations.

층간응력의 효과를 고려한 단일방향 900복합재 적층보의 진동감쇠 해석 (Vibraion Damping Analysis in $90^0$ Laminated Beam Considering the Effect of Interlaminar Stess)

  • 임종휘
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1261-1270
    • /
    • 2000
  • This paper is concerned with the development of a general model for predicting material damping in laminates based on the strain energy method. In this model, the effect of interlaminar stress on damping is taken into accounts along with those of in-plane extension/compression and in-plane shear. The model was verified by carrying out the damping measurements on $90^0$ unidirectional composite beams varying length and thickness. The analytical predictions were favorably compared with the experimental data. The transverse shear($$\sigma$_{yz}$) appears to have a considerable influence on the damping behaviors in $90^0$ unidirectional polymer composites. However, the other interlaminar stresses($$\sigma$_{xz}$, $$\sigma$_z$) were shown to have little impact on vibration damping in $90^0$ laminated composite beam.

Inclined yield lines in flange outstands

  • Bambach, M.R.
    • Structural Engineering and Mechanics
    • /
    • 제29권6호
    • /
    • pp.623-642
    • /
    • 2008
  • While spatial plastic mechanism analysis has been widely and successfully applied to thinwalled steel structures to analyse the post-failure behaviour of sections and connections, there remains some contention in the literature as to the basic capacity of an inclined yield line. The simple inclined hinge commonly forms as part of the more complex spatial mechanism, which may involve a number of hinges perpendicular or inclined to the direction of thrust. In this paper some of the existing theories are compared with single inclined yield lines that form in flange outstands, by comparing the theories with plate tests of plates simply supported on three sides with the remaining (longitudinal) edge free. The existing mechanism theories do not account for different in-plane displacement gradients of the loaded edge, nor the slenderness of the plates, and produce conservative results. A modified theory is presented whereby uniform and non-uniform in-plane displacements of the loaded edge of the flange, and the slenderness of the flange, are accounted for. The modified theory is shown to compare well with the plate test data, and its application to flanges that are components of sections in compression and/or bending is presented.

A Fast Algorithm for Fractal Image Coding

  • Kim, Jeong-Il;Kwak, Seung-Uk;Jeong, Keun-Won;Song, In-Keun;Yoo, Choong-Yeol;Lee, Kwang-Bae;Kim, Hyen-Ug
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.521-525
    • /
    • 1998
  • In this paper, we propose a fast algorithm for fractal image coding to shorten long time to take on fractal image encoding. For its performance evaluation, the algorithm compares with other traditional fractal coding methods. In the traditional fractal image coding methods, an original image is contracted by a factor in order to make an image to be matched. Then, the whole area of the contracted image is searched in order to find contractive transformation point of the original image corresponding to the contacted image. It needs a lot of searching time on encoding and remains limitation in the improvement of compression ratio. However, the proposed algorithm not only considerably reduces encoding tin e by using scaling method and limited search area method but also improves compression ratio by using bit-plane. When comparing the proposed algorithm with Jacquin's method, the proposed algorithm provides much shorter encoding time and better compression ratio with a little degradation of the decoded image quality than Jacquin's method.

  • PDF

보강(補剛)된 유공판(有孔板)의 좌굴강도해석(挫屈强度解析)(제1보)(第1報) -압축(壓縮) 좌굴(挫屈)- (The Buckling Analysis of Stiffened Plate with Hole($1^{st}$ Report) -Compression Buckling-)

  • 임상전;장창두;나승수
    • 대한조선학회지
    • /
    • 제19권4호
    • /
    • pp.11-18
    • /
    • 1982
  • When the perforated plate is under in-plane load of compression, buckling analysis becomes to be necessary because of the presence of stress concentration around holes. To constraint it, we need reinforcement. The methods of reinforcement are attaching doubler around hole and attaching stiffener in the direction of initial stress. In this paper, two methods are investigated mentioned above, which of the two better effective reinforcement. In the consequence of the above investigation, following conclusion was obtained. The method of doubler reinforcement was less buckling stress than that of stiffener because the former had large compressive stress. So, effective method of reinforcement is stiffener reinforcement.

  • PDF