• Title/Summary/Keyword: In-plane collision

Search Result 49, Processing Time 0.021 seconds

Detecting Collisions in Graph-Driven Motion Synthesis for Crowd Simulation (군중 시뮬레이션을 위한 그래프기반 모션합성에서의 충돌감지)

  • Sung, Man-Kyu
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.1
    • /
    • pp.44-52
    • /
    • 2008
  • In this paper we consider detecting collisions between characters whose motion is specified by motion capture data. Since we are targeting on massive crowd simulation, we only consider rough collisions, modeling the characters as a disk in the floor plane. To provide efficient collision detection, we introduce a hierarchical bounding volume, the Motion Oriented Bounding Box tree (MOBB tree). A MOBBtree stores space-time bounds of a motion clip. In crowd animation tests, MOBB trees performance improvements ranging between two and an order of magnitude.

The Design of a Dielectric Rod Antenna Using Genetic Algorithm Optimization for Vessel's Collision Avoidance Applications

  • Kahng, Sung-Tek;Ju, Jeong-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.3
    • /
    • pp.129-133
    • /
    • 2007
  • In this paper, we present the development of an antenna specialized for the maritime collision avoidance system. This antenna is configured as the dielectric rod partially embedded in the metal cavity to reduce the overall size, simultaneously assuring the mechanical sturdiness against the challenging oceanic weather conditions. More importantly, the design has been carefully done to meet the requirements on the radiation pattern(with the slope < 5 dB/deg in the elevation(E-plane), circular in the azimuth) suitable to receiving the reflected signals from the other objects on the sea. To find the optimal design parameters, the genetic algorithm has been used to meet the goals of the desired return loss and pattern. This design methodology is validated by the good agreement between the calculation and measurement.

An Animation Speed-independent Collision Detection Algorithm (애니메이션 속도에 무관한 충돌 탐지 알고리즘)

  • 김형석
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.31 no.3_4
    • /
    • pp.247-256
    • /
    • 2004
  • This paper presents an efficient collision detection algorithm the performance of which is independent of animation speed. Most of the previous collision detection algorithms are incremental and discrete methods, which find out the neighborhood of the extreme vertex at the previous time instance in order to get an extreme vertex at each time instance. However, if an object collides with another one with a high torque, then the angular speed becomes faster. Hence, the candidate by the incremental algorithms may be farther from the real extreme vertex at this time instance. Therefore, the worst time complexity nay be $O(n^2)$, where n is the number of faces. Moreover, the total time complexity of incremental algorithms is dependent on the time step size of animation because a smaller time step yields more frequent evaluation of Euclidean distance. In this paper, we propose a new method to overcome these drawbacks. We construct a spherical extreme vertex diagram on Gauss Sphere, which has geometric properties, and then generate the distance function of a polyhedron and a plane by using this diagram. In order to efficiently compute the exact collision time, we apply the interval Newton method to the distance function.

A FINDPATH PROBLEM IN THE PRESENCE OF MOVING OBSTACLES

  • Ha, Jun-Hong;Shim, Jae-Dong
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.125-137
    • /
    • 2000
  • A solution of the findpath problem in which a moving object in required to avoid moving obstacles and move to the designated target in the plane is porcided via the second method of Lyapunov. This paper presents an new control designed by a family of piecewise Lyapunov functions to solve a findpath problem and gives some simultion results of that.

EDISON Co-rotational Plane Beam-Transient anlaysis를 이용한 Energy method방법의 충격량해석 및 타격중심 매개변수 연구

  • Kim, SangHyeok;Lee, SangGu;Shin, SangJoon
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.194-203
    • /
    • 2017
  • The center of percussion(COP) is the point of an extended massive object attached to a pivot where a perpendicular impact will produce no reactive shock at the pivot. COP is an important concept in the field of vibration and dynamics. In vibration, COP causes reduction of vibration and in dynamics, it brings about maximum speed of an object. Many studies about COP are still in progress. However most of the researches have typically focused on the method of mathematical and numerical anlalysis. In this paper, impact analysis was proved by the mechanical energy method using EDISON co-rotational plane beam transient analysis program. The result expressed in acceleration was the relative magnitude of the impulse, which was the indicator of COP. Then, these results were compared with the reference thesis results for exact consequences. Additionally, parametric study of COP was conducted.

  • PDF

Tree Build Heuristics for Spatial Partitioning Trees of 3D Games (3D 게임 공간 분할 트리에서 트리 빌드 휴리스틱)

  • Kim, Youngsik
    • Journal of Korea Game Society
    • /
    • v.13 no.4
    • /
    • pp.25-34
    • /
    • 2013
  • Spatial partitioning trees are needed for processing collision detections efficiently. In order to select split planes for spatial partitioning trees, the tree balance and the number of polygons overlapped with the split plane should be considered. In this paper, the heuristic algorithm controlling weight values of tree build criteria is proposed for spatial partitioning trees of 3D games. As the weight values are changed, tree build time, T-junction elimination time which can cause visual artifacts in splitting polygons overlapped with the split plane, rendering speed (frame per second: FPS) according to tree balance are analysed under 3D game simulations.

Development of an Algorithm for Predictable Navigation and Collision Avoidance Using Pattern Recognition of an Obstacle in Autonomous Mobile Robot (장애물 패턴을 이용한 자율이동로봇의 예측주행 및 충돌회피 알고리즘 개발)

  • Lee, Min-Chul;Kim, Bum-Jae;Lee, Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.7
    • /
    • pp.113-123
    • /
    • 2000
  • In the navigation for a mobile robot, the collision avoidance with unexpected obstacles is essential for the safe navigation and it is independent of the technique used to control the mobile robot. This paper presents a new collision avoidance algorithm using neural network for the safe navigation of the autonomous mobile robot equipped with CAN and ultrasonic sensors. A tracked wheeled mobile robot has a stability and an efficiency to move on a rough ground. And its mechanism is simple. However it has difficulties to recognize its surroundings. Because the shape of the tracked wheeled mobile robot is a square type, sensor modules are generally located on the each plane surface of 4 sides only. In this paper, the algorithm using neural network is proposed in order to avoid unexpected obstacles. The important character of the proposed algorithm is to be able to detect the distance and the angle of inclination of obstacles. Only using datum of the distance and the angle, informations about the location and shape of obstacles are obtained, and then the driving direction is changed. Consequently, this algorithm is capable of real time processing and available for a mobile robot which has few sensor modules or the limited sensing range such as a tracked wheeled mobile robot. Effectiveness of the proposed algorithm is illustrated through a computer simulation and an experiment using a real robot.

  • PDF

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments (키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법)

  • Tuvshinjargal, Doopalam;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.549-559
    • /
    • 2015
  • In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

Palaeomagnetic Results from the Okchon Belt: Anisotropy of Magnetic Susceptibility (AMS) and Tectonic Stress Field in the Taebaek Area (옥천대에 대한 고자기 연구 : 태백지역에서의 대자율 비등방성과 지구조적 응력장)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Jung, Yeon-Kyu;Kim, In-Soo
    • Economic and Environmental Geology
    • /
    • v.30 no.6
    • /
    • pp.613-624
    • /
    • 1997
  • A study of anisotropy of magnetic susceptibility (AMS) was conducted on the Ordovician-Eocene strata in the Taebaek area. The study area is a northeastern part of the Okchon belt, sometimes called as Paegunsan Synclinal Area. A total of 600 independently oriented samples were collected from 60 sites covering the whole area. With a few exception of late Cretaceous-Eocene volcanic rocks, all the sampled strata are nonmetamorphosed sedimentary rocks, mainly sandstones. Among the 60 sites, 5 sites showed flow lineation lying on the bedding plane, 11 sites showed load foliation parallel to the bedding plane, and 21 sites showed tectonic foliation unrelated to the bedding plane. The tectonic foliations are defined by $k_1-k_2$ ($k_{max}-k_{int}$) anisotropy plane, and are considered as a result of tectonic forces acted perpendicularly to the foliation plane in the geologic past. Regardless of sample-site locations, tectonic force directions defined by $k_3$ ($k_{min}$) axis perpendicular to the tectonic foliation are consistent among the strata of the same geologic age. In the course of geologic time, however, the tectonic force directions showed a clockwise rotation: approximately E-W in the Ordovician sites, NW-SE in the Permian sites, N-S in the Triassic sites, and lastly NE-SW in the late Cretaceous-Eocene sites. The pre-Permian directions showed better clustering in the in-situ (geographic) coordinates, while the younger directions become better clustered after the bedding-tilt correction. It is interpreted that the major tectonic structures of the Taebaek area were controlled by the above-mentioned tectonic forces: The Paegunsan Syncline and the Hambaeksan Fault must have been generated by the NW-SE force of late Permian-early Triassic time. It was then reactivated in the reverse (dextral) sense by the N-S force of Triassic time. The Osipchon Fault in the eastern part of the study area was either generated or reactivated by the NE-SW force of late Cretaceous-Eocene time. The Permo-Triassic NW-SE force should be an expression of the Songnim Disturbance in the Korean peninsula, which is in turn related with the SCB/NCB collision in China.

  • PDF