• 제목/요약/키워드: In-pipe robot

검색결과 96건 처리시간 0.028초

손동작으로 제어 가능한 운송 로봇 개발 (Development of Hand-Controlled Transportation Robot)

  • 이인규;조영준;강정석;이윤재;유홍석
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2022년도 제66차 하계학술대회논문집 30권2호
    • /
    • pp.481-482
    • /
    • 2022
  • 본 논문에서는 손동작으로 제어 가능한 운송 로봇을 제안한다. 제안한 시스템에서 로봇은 MediaPipe를 이용하여 실시간으로 사람의 손동작을 인식한다. 또한, 동시적 위치 추적 지도 작성 기법인 SLAM(Simultaneous Localization and Mapping) 기술을 이용하여 로봇이 실내 공간에서 길을 찾고 자율적으로 이동할 수 있게 한다. 개발된 로봇실험을 통하여 로봇이 실시간으로 손동작을 인식하고 동작을 제어하는 것을 확인하였다. 또한, 사전에 작성된 지도를 바탕으로 실내에서 로봇이 자율주행을 하는 것을 확인하였다.

  • PDF

레이저 용접 로봇의 경로 생성에 관한 연구 (Study on Path Generation for Laser Welding Robot)

  • 강희신;서정;박경택
    • 한국레이저가공학회지
    • /
    • 제13권4호
    • /
    • pp.14-20
    • /
    • 2010
  • Robot path generation and laser welding technology for manufacturing automotive body are studied. Laser welding and industrial robot systems are used with the robot based laser welding system. The laser system used in this study is 1.6kW Fiber laser, while the robot system is 6 axes Industrial robot (payload: 130kg). The robot based laser welding system is equipped with laser scanner system for remote laser welding. The laser source, robot and laser scanner system are used to increase the processing speed and to improve the process efficiency. The welding joints of steel plate are butt and lapped joints. The quality test of the laser welding are through the observation the shape of bead on plate and cross-section of welding part. The 3 dimensional laser welding for non-linear pipe welding line is performed. This paper introduces the robot based laser welding system to resolve the limited welding speed and accuracy of the conventional spot welding system.

  • PDF

이동로봇을 이용한 곡관(Curved Pipes) 검사용 디바이스 설계 (Device Design for Inspection Curved Pipes using the Mobile Robot)

  • 조현영;최창환;최용제;김승호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1458-1462
    • /
    • 2003
  • High temperature and high pressure heavy water flows through the pipes in atomic power plants. The curved parts of pipes are critical parts in that they change the direction of steam flow, and these parts are especially affected by severe wear. Therefore, most pipes in atomic power plants are tested by non-destructive examination by workers who use ultrasonic sensors to measure the wall thickness of pipes. But not only are these pipes located in a very dangerous environment, but the space is also very limited. For the safety of workers, it is necessary to design a device that uses a mobile robot that can inspect curved pipes. This paper presents the design and construction of a small device that can generate the necessary contact forces between ultrasonic sensors and pipe walls in a limited space. And a mobile robot is used in place ortho worker for successful non-destructive examination.

  • PDF

수직통로를 극복하기 위한 협소구역 이동용 다관절 로봇 설계 (Design of Articulated Mobile Robot to Overcome Vertical Passages in Narrow Space)

  • 이지수;김성현;양현석;박노철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.806-811
    • /
    • 2005
  • The robot to search and rescue is used in narrow space where human cannot approach. In case of this robot, it can overcome obstacles such as wrecks or stairs etc. Also, this robot can do various locomotion for each object. In this reason, an articulated robot has advantages comparing with one module robot. However, the existing articulated robot has limits to overcome vertical passages. For expanding contacted territory of robot, a novel mechanism is demanded. In this paper, the novel mechanism of articulated mobile robot is designed for moving level ground and vertical passages. This paper proposes to change wheel alignment. The robot needs two important motions for passing vertical passages like pipe. One is a motion to press wheels at wall for not falling into gravity direction. The other is a motion that wheels contact a vertical direction of wall's tangential direction for reducing loss of force. The mechanism of the robot focused that two motions can be acted to use just one motor. Length of each link of robot is optimized that wheels contact a vertical direction of wall's tangential direction through kinematic modeling of each link. The force of pressing wall of robot is calculated through dynamic modeling. This robot composes four modules. This mechanism is confirmed by dynamic simulation using ADAMS program. The articulated mobile robot is elaborated based on the results of kinematic modeling and dynamic simulation.

  • PDF

다이케스팅 이형재 분사 로봇시스템의 터빈 모듈 설계에 관한 연구 (Study of Turbine Module Design for Die Casting Mold Release Injection Robot System)

  • 최현진;손영범;박철우;이승용;최성대
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.1-7
    • /
    • 2015
  • Cleaning by injecting dry ice and water is a generally adopted trend these days to clean molds (injection, diecasting foundry, press, rubber mold, etc). This cleaning method is performed manually, or by installing multiple high pressure spray nozzles. We have manufactured a turbine cleaning module device that is able to clean diecasting modules at any position and angle in the space by mounting an articulated robot instead of the existing pipe type injection nozzle, to minimize lead time and enhance working yield of the cleaning process. In this paper, we analyzed process factors that are required to design the turbine module by reviewing number of revolution, and results according to different blade angles and thicknesses of the mold release injection turbine module, using computational fiuid dynamics (CFD).

A study of the kinematic characteristic of a coupling device between the buffer system and the flexible pipe of a deep-seabed mining system

  • Oh, Jae-Won;Lee, Chang-Ho;Hong, Sup;Bae, Dae-Sung;Cho, Hui-Je;Kim, Hyung-Woo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권3호
    • /
    • pp.652-669
    • /
    • 2014
  • This paper concerns the kinematic characteristics of a coupling device in a deep-seabed mining system. This coupling device connects the buffer system and the flexible pipe. The motion of the buffer system, flexible pipe and mining robot are affected by the coupling device. So the coupling device should be considered as a major factor when this device is designed. Therefore, we find a stable kinematic device, and apply it to the design coupling device through this study. The kinematic characteristics of the coupling device are analyzed by multi-body dynamics simulation method, and finite element method. The dynamic analysis model was built in the commercial software DAFUL. The Fluid Structure Interaction (FSI) method is applied to build the deep-seabed environment. Hydrodynamic force and moment are applied in the dynamic model for the FSI method. The loads and deformation of flexible pipe are estimated for analysis results of the kinematic characteristics.

시설농장 무선원격 반자동 방제시스템 개발 (Development of Semi-Autonomous Pesticide Spray Robot for Glass House Rose Farming)

  • 김경철;유범상;양창완;장교근
    • 한국정밀공학회지
    • /
    • 제27권9호
    • /
    • pp.34-42
    • /
    • 2010
  • Agricultural automation has become more and more important by environmental change. The automation demands the highest technology due to the ever changing various conditions in agriculture system. In the paper, semi-autonomous pesticide spray robot system has been developed for rose farming in the glass house. The robot is in autonomous mode during pesticide spraying process driven on pipe rail. The robot is manually driven while moving from a rail to the next rail. The drive platform and autonomous operation control system are developed based on IT fusion technology. The pesticide spray system is also developed with nozzles and booms for precision mist spray system. Experimental data of nozzle test is also included.

벨로우즈형 신축관이음의 휨각도 예측 및 이를 이용한 배관계의 안정성 해석 (Prediction of Bending Angle of Bellows and Stability Analysis of Pipeline Using the Prediction)

  • 손인수
    • 한국산업융합학회 논문집
    • /
    • 제25권5호
    • /
    • pp.827-833
    • /
    • 2022
  • In this study, the prediction of the bending angle for the 350 A bellows-type expansion joints and the structural stability according to the load were determined. The stability of the 2km piping system was predicted by applying the allowable bending angle of the expansion pipe joint obtained from the analysis. The maximum bending angle was calculated through bending analysis of the bellows-type expansion joints, and the maximum bending angle by numerical calculation was about 1.8°, and the maximum bending angle of the bellows obtained by comparing the allowable strength of the material was about 0. 22°. This angle was very stable compared to the allowable bending angle (3°) of the expansion pipe joint regulation. By applying the maximum bending angle, the allowable maximum deflection of the 2 km pipe was about 3.8 m. When the seismic load was considered using regression analysis, the maximum deflection of the 2km pipe was about 142.3mm, and it was confirmed that the bellows-type expansion joints and the deflection were stable compared to the allowable maximum deflection of the pipe system. These research results are expected to present design and analysis guidelines for the construction of piping and the development of bellows systems, and to be used as basic data for systematic research.

스크류 추진형 검측 로봇의 효율적인 검측을 위한 스크류 구조 변화 메커니즘 (Screw Transformation Mechanism of Screw-Propelled Robot for Efficient Void Detection in Grease Pipe)

  • 김동선;김호중;김진현
    • 로봇학회논문지
    • /
    • 제17권2호
    • /
    • pp.172-177
    • /
    • 2022
  • In general, detection robots using ultrasonic sensors are equipped with sensors to protrude outward or to contact objects. However, in the case of a screw-propelled robot that detects the inside of a reactor tendon duct, if the ultrasonic sensor protrudes to the outside, resistance due to grease is generated, and thus the propulsion efficiency is reduced. In order to increase the propulsion efficiency, the screw must be sharp, and the sharper the screw, the more difficult it is to apply a high-performance ultrasonic sensor, and the detection efficiency decreases. This paper proposes a screw shape-changing mechanism that can improve both propulsion efficiency and detection efficiency. This mechanism includes an overlapped helical ring (OHR) structure and a magnetic clutch system (MCS), and thus the shape of a screw may be changed to a compact size. As a result, the Screw-propelled robot with this mechanism can reduce the overall length by about 150 mm and change the shape of the screw faster and more accurately than a robot with a linear actuator.

원유유출 방재로봇의 컨셉디자인 (Conceptual Design of Oil Spill Protection Robot)

  • 김지훈;김명석
    • 로봇학회논문지
    • /
    • 제3권4호
    • /
    • pp.345-350
    • /
    • 2008
  • This study aims to propose the concept design of oil spill protection robot which can rapidly intervene to control the oil spillage situation at the sea. Taking into account the fact that a huge amount of oil is transported trans-continentally by oil tanker, none of industrialized countries are completely safe from the marine oil spill which results in social, economical and ecological damages to their communities. The employment of double hull-oil tanker, pipe line transporting can be most safe way. Yet complete prevention of oil spill is probably not realistic. Accordingly the alternative solution to control marine oil spill and minimize the damages caused by the incident using intelligent robot technology based on swarm control method is proposed. The main features of oil spill protection(OSP) robot is explained via following three perspectives. Firstly, from functional point of view, OSP robot system safely and efficiently replaces oil boom installation manually conducted by human workers with intelligent robot technology based on swarm control theory. For second, its modular architecture brings efficient storage of main components including oil boom and facilitates maintenance. For the last, its geometric form and shape enables whole system to be installed to helicopter, boat or oil tanker itself with ease and to rapidly deploy the units to the oil spill area.

  • PDF