• 제목/요약/키워드: In-memory parallel distributed computing

검색결과 29건 처리시간 0.022초

GPU 클러스터 기반 대용량 온톨로지 추론 (Scalable Ontology Reasoning Using GPU Cluster Approach)

  • 홍진영;전명중;박영택
    • 정보과학회 논문지
    • /
    • 제43권1호
    • /
    • pp.61-70
    • /
    • 2016
  • 근래에 들어 다양한 시멘틱 서비스를 위하여 기존의 지식을 바탕으로 새로운 지식을 고속으로 추론할 수 있는 대용량 온톨로지 추론 기법이 요구되고 있다. 이런 추세에 따라 대규모의 클러스터를 활용하는 하둡 및 Spark 프레임워크 기반의 온톨로지 추론 엔진 개발이 연구되고 있다. 또한, 기존의 CPU에 비해 많은 코어로 구성되어 있는 GPGPU를 활용하는 병렬 프로그래밍 방식도 온톨로지 추론에 활용되고 있다. 앞서 말한 두 가지 방식의 장점을 결합하여, 본 논문에서는 RDFS 대용량 온톨로지 데이터를 인-메모리 기반 프레임워크인 Spark를 통해 분산시키고 GPGPU를 이용하여 분산된 데이터를 고속 추론하는 방법을 제안한다. GPGPU를 통한 온톨로지 추론은 기존의 추론 방식보다 저비용으로 고속 추론을 수행하는 것이 가능하다. 또한 Spark 클러스터의 각 노드를 통하여 대용량 온톨로지 데이터에 대한 부하를 줄일 수 있다. 본 논문에서 제안하는 추론 엔진을 평가하기 위하여 LUBM10, 50, 100, 120에 대해 추론 속도를 실험하였고, 최대 데이터인 LUBM120(약 1백7십만 트리플, 2.1GB)의 실험 결과, 인-메모리(Spark) 추론 엔진 보다 7배 빠른 추론 성능을 보였다.

Apache Spark를 활용한 대용량 데이터의 처리 (Processing large-scale data with Apache Spark)

  • 고세윤;원중호
    • 응용통계연구
    • /
    • 제29권6호
    • /
    • pp.1077-1094
    • /
    • 2016
  • 아파치 스파크는 빠르고 범용성이 뛰어난 클러스터 컴퓨팅 패키지로, 복구 가능한 분산 데이터셋이라는 새로운 추상화를 통해 데이터를 인메모리에 유지하면서도 결함 감내성을 얻을 수 있는 방법을 제공한다. 이러한 추상화는 하드디스크에 직접 데이터를 읽고 쓰는 방식으로 결함 감내성을 제공하는 기존의 대표적인 대용량 데이터 분석 기술인 맵 리듀스 프레임워크에 비해 상당한 속도 향상을 거두었다. 특히 로지스틱 회귀 분석이나 K-평균 군집화와 같은 반복적인 기계 학습 알고리즘이나 사용자가 실시간으로 데이터에 관한 질의를 하는 대화형 자료 분석에서 스파크는 매우 효율적인 성능을 보인다. 뿐만 아니라, 높은 범용성을 바탕으로 하여 기계 학습, 스트리밍 자료 처리, SQL, 그래프 자료 처리와 같은 다양한 고수준 라이브러리를 제공한다. 이 논문에서는 스파크의 개념과 프로그래밍 모형에 대해 소개하고, 이를 통해 몇 가지 통계 분석 알고리즘을 구현하는 방법에 대해 소개한다. 아울러, 스파크에서 제공하는 기계 학습 라이브러리인 MLlib과 R 언어 인터페이스인 SparkR에 대해 다룬다.

MPI 기법을 이용한 병렬 홍수침수해석 (Parallel Flood Inundation Analysis using MPI Technique)

  • 박재홍
    • 한국수자원학회논문집
    • /
    • 제47권11호
    • /
    • pp.1051-1060
    • /
    • 2014
  • 본 연구에서는 분산 메모리환경 병렬프로그래밍 모델의 표준인 MPI (Message Passing Interface) 기법과 침수해석 모형인 DHM(Diffusion Hydrodynamic Model) 모형을 연계하여 침수모형을 병렬화하고 기존의 기법으로 복잡하고 장시간의 계산시간을 요구하였던 계산에 대해 향상된 계산 성능을 구현하고자 하였다. 개발된 모형을 다양한 침수 시나리오를 바탕으로 가상유역과 실제유역에 대하여 코어 개수별로 모의함으로써 제내지 침수에 따른 침수범위 및 침수위의 추정, 및 계산시간 단축 효과를 입증 하고 병렬기법에 대한 홍수해석 분야의 적용성을 입증하고자 하였다. 본 연구에서 개발된 모형의 검증을 위하여 2차원 가상 제내지 및 실제 침수 사례에 대하여 적용하였고, 적용결과 동일한 정확도를 기준으로 계산시간 면에서 단일 코어와 비교하여 멀티코어를 사용한 경우 약 41~48%의 개선효과가 나타나는 것을 확인하였다. 본 연구에서 개발된 병렬해석 기법을 이용한 침수해석 모형은 멀티코어를 적용하여 짧은 계산시간으로 침수심, 침수구역, 홍수파 전달속도 등이 계산 가능하여, 실제 홍수 발생 시 침수지역에서의 신속한 예측 및 대처, 홍수위험지도 구축 등에 유용하게 이용될 수 있을 것으로 기대된다.

반도체 검증을 위한 MPI 기반 클러스터에서의 대용량 FDTD 시뮬레이션 연산환경 구축 (Implementation of Massive FDTD Simulation Computing Model Based on MPI Cluster for Semi-conductor Process)

  • 이승일;김연일;이상길;이철훈
    • 한국콘텐츠학회논문지
    • /
    • 제15권9호
    • /
    • pp.21-28
    • /
    • 2015
  • 반도체 공정에서는 소자 내부의 물리량 계산을 통해 불순물의 움직임을 해석하여 결점을 검출하는 시뮬레이션을 수행하게 된다. 이를 위해 유한 차분 시간 영역 알고리즘(Finite-Difference Time-Domain, 이하 FDTD)과 같은 수치해석 기법이 사용된다. 반도체 칩의 집적도 향상으로 인하여 소자의 크기는 나노스케일 시대로 접어들었으며, 시뮬레이션 사이즈 또한 커지고 있는 추세이다. 이에 따라 CPU와 GPU 같은 하나의 연산 장치에서 수행할 수 없는 문제와 다중의 연산 장치로 구성된 한 대의 컴퓨터에서 수행할 수 없는 문제가 발생하기도 한다. 이러한 문제로 인해 분산 병렬처리를 통한 FDTD 알고리즘 연구가 진행되고 있다. 하지만 기존의 연구들은 단일 연산장치만을 이용하기 때문에 GPU를 사용하는 경우 연산 속도는 빠르나 메모리의 제한이 있으며 CPU의 경우 GPU에 비해 연산 속도가 느린 단점이 존재한다. 이를 해결하기 위해 본 논문에서는 CPU, GPU의 이기종 연산 장치를 포함하는 컴퓨터로 구축된 클러스터 상에서 작업 사이즈에 제한되지 않고 시뮬레이션 수행이 가능한 컴퓨팅 모델을 구현하였다. 점대점 통신 기반의 MPI 라이브러리를 이용하여 연산 장치 간 통신을 통한 시뮬레이션을 테스트 하였고 사용하는 연산 장치의 종류와 수에 상관없이 시뮬레이션이 정상 동작함을 확인하였다.

ARM 클러스터에서 에너지 효율 향상을 위한 MPI와 MapReduce 모델 비교 (Comparing Energy Efficiency of MPI and MapReduce on ARM based Cluster)

  • 자한제프 마크불;페르마타 눌 리즈키;오상윤
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2014년도 제49차 동계학술대회논문집 22권1호
    • /
    • pp.9-13
    • /
    • 2014
  • The performance of large scale software applications has been automatically increasing for last few decades under the influence of Moore's law - the number of transistors on a microprocessor roughly doubled every eighteen months. However, on-chip transistors limitations and heating issues led to the emergence of multicore processors. The energy efficient ARM based System-on-Chip (SoC) processors are being considered for future high performance computing systems. In this paper, we present a case study of two widely used parallel programming models i.e. MPI and MapReduce on distributed memory cluster of ARM SoC development boards. The case study application, Black-Scholes option pricing equation, was parallelized and evaluated in terms of power consumption and throughput. The results show that the Hadoop implementation has low instantaneous power consumption that of MPI, but MPI outperforms Hadoop implementation by a factor of 1.46 in terms of total power consumption to execution time ratio.

  • PDF

클라우드 환경에서 MongoDB 기반의 비정형 로그 처리 시스템 설계 및 구현 (Design and Implementation of MongoDB-based Unstructured Log Processing System over Cloud Computing Environment)

  • 김명진;한승호;최운;이한구
    • 인터넷정보학회논문지
    • /
    • 제14권6호
    • /
    • pp.71-84
    • /
    • 2013
  • 컴퓨터 시스템 운용 간에 발생하는 많은 정보들이 기록되는 로그데이터는 컴퓨터 시스템 운용 점검, 프로세스의 최적화, 사용자 최적화 맞춤형 제공 등 다방면으로 활용되고 있다. 본 논문에서는 다양한 종류의 로그데이터들 중에서 은행에서 발생하는 대용량의 로그데이터를 처리하기 위한 클라우드 환경 하에서의 MongoDB 기반 비정형 로그 처리시스템을 제안한다. 은행업무간 발생하는 대부분의 로그데이터는 고객의 업무처리 프로세스 간에 발생하며, 고객 업무 프로세스 처리에 따른 로그데이터를 수집, 저장, 분류, 분석하기 위해서는 별도로 로그데이터를 처리하는 시스템을 구축해야만 한다. 하지만 기존 컴퓨팅환경 하에서는 폭발적으로 증가하는 대용량 비정형 로그데이터 처리를 위한 유연한 스토리지 확장성 기능, 저장된 비정형 로그데이터를 분류, 분석 처리할 수 있는 기능을 구현하기가 매우 어렵다. 이에 따라 본 논문에서는 클라우드 컴퓨팅 기술을 도입하여 기존 컴퓨팅 인프라 환경의 분석 도구 및 관리체계에서 처리하기 어려웠던 비정형 로그데이터를 처리하기 위한 클라우드 환경기반의 로그데이터 처리시스템을 제안하고 구현하였다. 제안한 본 시스템은 IaaS(Infrastructure as a Service) 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하며 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함한다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 게다가, HDFS(Hadoop Distributed File System)을 도입함으로써 축적된 로그데이터를 블록단위로 복제본을 생성하여 저장관리하기 때문에 본 시스템은 시스템 장애와 같은 상황에서 시스템이 멈추지 않고 작동할 수 있는 자동복구 기능을 제공한다. 마지막으로, 본 시스템은 NoSQL 기반의 MongoDB를 이용하여 분산 데이터베이스를 구축함으로써 효율적으로 비정형로그데이터를 처리하는 기능을 제공한다. MySQL과 같은 관계형 데이터베이스는 복잡한 스키마 구조를 가지고 있기 때문에 비정형 로그데이터를 처리하기에 적합하지 않은 구조를 가지고 있다. 또한, 관계형 데이터베이스의 엄격한 스키마 구조는 장기간 데이터가 축적되거나, 데이터가 급격하게 증가할 때 저장된 데이터를 분할하여 여러 노드에 분산시키는 노드 확장이 어렵다는 문제점을 가지고 있다. NoSQL은 관계형 데이터베이스에서 제공하는 복잡한 연산을 지원하지는 않지만 데이터가 빠르게 증가할 때 노드 분산을 통한 데이터베이스 확장이 매우 용이하며 비정형 데이터를 처리하는데 매우 적합한 구조를 가지고 있는 비관계형 데이터베이스이다. NoSQL의 데이터 모델은 주로 키-값(Key-Value), 컬럼지향(Column-oriented), 문서지향(Document-Oriented)형태로 구분되며, 제안한 시스템은 스키마 구조가 자유로운 문서지향(Document-Oriented) 데이터 모델의 대표 격인 MongoDB를 도입하였다. 본 시스템에 MongoDB를 도입한 이유는 유연한 스키마 구조에 따른 비정형 로그데이터 처리의 용이성뿐만 아니라, 급격한 데이터 증가에 따른 유연한 노드 확장, 스토리지 확장을 자동적으로 수행하는 오토샤딩 (AutoSharding) 기능을 제공하기 때문이다. 본 논문에서 제안하는 시스템은 크게 로그 수집기 모듈, 로그 그래프생성 모듈, MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈로 구성되어져 있다. 로그 수집기 모듈은 각 은행에서 고객의 업무 프로세스 시작부터 종료 시점까지 발생하는 로그데이터가 클라우드 서버로 전송될 때 로그데이터 종류에 따라 데이터를 수집하고 분류하여 MongoDB 모듈과 MySQL 모듈로 분배하는 기능을 수행한다. 로그 그래프생성 모듈은 수집된 로그데이터를 분석시점, 분석종류에 따라 MongoDB 모듈, Hadoop기반 분석 모듈, MySQL 모듈에 의해서 분석되어진 결과를 사용자에게 웹 인터페이스 형태로 제공하는 역할을 한다. 실시간적 로그데이터분석이 필요한 로그데이터는 MySQL 모듈로 저장이 되어 로그 그래프생성 모듈을 통하여 실시간 로그데이터 정보를 제공한다. 실시간 분석이 아닌 단위시간당 누적된 로그데이터의 경우 MongoDB 모듈에 저장이 되고, 다양한 분석사항에 따라 사용자에게 그래프화해서 제공된다. MongoDB 모듈에 누적된 로그데이터는 Hadoop기반 분석모듈을 통해서 병렬 분산 처리 작업이 수행된다. 성능 평가를 위하여 로그데이터 삽입, 쿼리 성능에 대해서 MySQL만을 적용한 로그데이터 처리시스템과 제안한 시스템을 비교 평가하였으며 그 성능의 우수성을 검증하였다. 또한, MongoDB의 청크 크기별 로그데이터 삽입 성능평가를 통해 최적화된 청크 크기를 확인하였다.

대용량 추론을 위한 분산환경에서의 가정기반진리관리시스템 (Distributed Assumption-Based Truth Maintenance System for Scalable Reasoning)

  • 바트셀렘;박영택
    • 정보과학회 논문지
    • /
    • 제43권10호
    • /
    • pp.1115-1123
    • /
    • 2016
  • 가정기반진리관리 시스템(ATMS)은 추론 시스템의 추론 과정을 저장하고 비단조추론을 지원할 수 있는 도구이다. 또한 의존기반 backtracking을 지원하므로 매우 넓은 공간 탐색 문제를 해결 할 수 있는 강력한 도구이다. 모든 추론 과정을 기록하고, 특정한 컨텍스트에서 지능형시스템의 Belief를 매우 빠르게 확인하고 비단조 추론 문제에 대한 해결책을 효율적으로 제공할 수 있게 한다. 그러나 최근 데이터의 양이 방대해지면서 기존의 단일 머신을 사용하는 경우 문제 해결 프로그램의 대용량의 추론과정을 저장하는 것이 불가능하게 되었다. 대용량 데이터에 대한 문제 해결 과정을 기록하는 것은 많은 연산과 메모리 오버헤드를 야기한다. 이러한 단점을 극복하기 위해 본 논문에서는 Apache Spark 환경에서 functional 및 객체지향 방식 기반의 점진적 컨텍스트 추론을 유지할 수 있는 방법을 제안한다. 이는 가정(Assumption)과 유도과정을 분산 환경에 저장하며, 실체화된 대용량 데이터셋의 변화를 효율적으로 수정가능하게 한다. 또한 ATMS의 Label, Environment를 분산 처리하여 대규모의 추론 과정을 효과적으로 관리할 수 있는 방안을 제시하고 있다. 제안하는 시스템의 성능을 측정하기 위해 5개의 노드로 구성된 클러스터에서 LUBM 데이터셋에 대한 OWL/RDFS 추론을 수행하고, 데이터의 추가, 설명, 제거에 대한 실험을 수행하였다. LUBM2000에 대하여 추론을 수행한 결과 80GB데이터가 추론되었고, ATMS에 적용하여 추가, 설명, 제거에 대하여 수초 내에 처리하는 성능을 보였다.

도로 주행환경 분석을 위한 빅데이터 플랫폼 구축 정보기술 인프라 개발 (Development of Information Technology Infrastructures through Construction of Big Data Platform for Road Driving Environment Analysis)

  • 정인택;정규수
    • 한국산학기술학회논문지
    • /
    • 제19권3호
    • /
    • pp.669-678
    • /
    • 2018
  • 본 연구는 차량센싱데이터, 공공데이터 등 다종의 빅데이터를 활용하여 주행환경 분석 플랫폼 구축을 위한 정보기술 인프라를 개발하였다. 정보기술 인프라는 H/W 기술과 S/W 기술로 구분할 수 있다. 먼저, H/W 기술은 빅데이터 분산 처리를 위한 병렬처리 구조의 소형 플랫폼 서버를 개발하였다. 해당 서버는 1대의 마스터 노드와 9대의 슬래이브 노드로 구성하였으며, H/W 결함에 따른 데이터 유실을 막기 위하여 클러스터 기반 H/W 구성으로 설계하였다. 다음으로 S/W 기술은 빅데이터 수집 및 저장, 가공 및 분석, 정보시각화를 위한 각각의 프로그램을 개발하였다. 수집 S/W의 경우, 실시간 데이터는 카프카와 플럼으로 비실시간 데이터는 스쿱을 이용하여 수집 인터페이스를 개발하였다. 저장 S/W는 데이터의 활용 용도에 따라 하둡 분산파일시스템과 카산드라 DB로 구분하여 저장하는 인터페이스를 개발하였다. 가공 S/W는 그리드 인덱스 기법을 적용하여 수집데이터의 공간 단위 매칭과 시간간격 보간 및 집계를 위한 프로그램을 개발하였다. 분석 S/W는 개발 알고리즘의 탐재 및 평가, 장래 주행환경 예측모형 개발을 위하여 제플린 노트북 기반의 분석 도구를 개발하였다. 마지막으로 정보시각화 S/W는 다양한 주행환경 정보제공 및 시각화를 위하여 지오서버 기반의 웹 GIS 엔진 프로그램을 개발하였다. 성능평가는 개발서버의 메모리 용량과 코어개수에 따른 연산 테스트를 수행하였으며, 타 기관의 클라우드 컴퓨팅과도 연산성능을 비교하였다. 그 결과, 개발 서버에 대한 최적의 익스큐터 개수, 메모리 용량과 코어 개수를 도출하였으며, 개발 서버는 타 시스템 보다 연산성능이 우수한 것으로 나타났다.

Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스 (Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis)

  • 박민희;조영복;김소영;박종배;박종혁
    • 한국정보통신학회논문지
    • /
    • 제22권10호
    • /
    • pp.1277-1286
    • /
    • 2018
  • 본 논문에서는 공개의료정보 빅데이터 분석을 위해 클라우드 환경에서 아파치 하둡 기반의 클라우드 환경을 도입하여 컴퓨팅 자원의 유연한 확장성을 제공하고 실제로, 로그데이터가 장기간 축적되거나 급격하게 증가하는 상황에서 스토리지, 메모리 등의 자원을 신속성 있고 유연하게 확장을 할 수 있는 기능을 포함했다. 또한, 축적된 비정형 로그데이터의 실시간 분석이 요구되어질 때 기존의 분석도구의 처리한계를 극복하기 위해 본 시스템은 하둡 (Hadoop) 기반의 분석모듈을 도입함으로써 대용량의 로그데이터를 빠르고 신뢰성 있게 병렬 분산 처리할 수 있는 기능을 제공한다. 빅데이터 분석을 위해 빈도분석과 카이제곱검정을 수행하고 유의 수준 0.05를 기준으로 단변량 로지스틱 회귀분석과 모델별 의미 있는 변수들의 다변량 로지스틱 회귀분석을 시행 하였다. (p<0.05) 의미 있는 변수들을 모델별로 나누어 다변량 로지스틱 회귀 분석한 결과 Model 3으로 갈수록 적합도가 높아졌다.