We study parallel processing techniques for the R programming language of high performance computing technology. In this study, we used massively parallel computing system which has 25,408 cpu cores. We conducted a performance evaluation of a distributed memory system using MPI and of a the shared memory system using OpenMP. Our findings are summarized as follows. First, For some particular algorithms, parallel processing is about 150 times faster than serial processing in R. Second, the distributed memory system gets faster as the number of nodes increases while shared memory system is limited in the improvement of performance, due to the limit of the number of cpus in a single system.
Do, Xuan Huyen;Ha, Viet Hai;Tran, Van Long;Renault, Eric
ETRI Journal
/
제43권5호
/
pp.825-834
/
2021
Based on its simplicity and user-friendly characteristics, OpenMP has become the standard model for programming on shared-memory architectures. Checkpointing-aided parallel execution (CAPE) is an approach that utilizes the discontinuous incremental checkpointing technique (DICKPT) to translate and execute OpenMP programs on distributed-memory architectures automatically. Currently, CAPE implements the OpenMP execution model by utilizing the DICKPT to distribute parallel jobs and their data to slave machines, and then collects the results after executing these distributed jobs. Although this model has been proven to be effective in terms of performance and compatibility with OpenMP on distributed-memory systems, it cannot fully exploit the capabilities of multicore processors. This paper presents a novel execution model for CAPE that utilizes two levels of parallelism. In the proposed model, we add another level of parallelism in the form of multithreaded processes on slave machines with the goal of better exploiting their multicore CPUs. Initial experimental results presented near the end of this paper demonstrate that this model provides significantly enhanced CAPE performance.
The high intensity of research and modeling in fields of mathematics, physics, biology and chemistry requires new computing resources. For the big computational complexity of such tasks computing time is large and costly. The most efficient way to increase efficiency is to adopt parallel principles. Purpose of this paper is to present the issue of parallel computing with emphasis on the analysis of parallel systems, the impact of communication delays on their efficiency and on overall execution time. Paper focuses is on finite algorithms for solving systems of linear equations, namely the matrix manipulation (Gauss elimination method, GEM). Algorithms are designed for architectures with shared memory (open multiprocessing, openMP), distributed-memory (message passing interface, MPI) and for their combination (MPI + openMP). The properties of the algorithms were analytically determined and they were experimentally verified. The conclusions are drawn for theory and practice.
Many researchers have recently studied multi-level formulation strategies to solve the MDO problems and they basically distributed the coupling compatibilities across all disciplines, while single-level formulations concentrate all the controls at the system-level. In addition, approximation techniques became remedies for computationally expensive analyses and simulations. This paper studies comparisons of the MDO methods with respect to computing performance considering both conventional sequential and modem distributed/parallel processing environments. The comparisons show Individual Disciplinary Feasible (IDF) formulation is the most efficient for sequential processing and IDF with approximation (IDFa) is the most efficient for parallel processing. Results incorporating to popular design examples show this finding. The author suggests design engineers should firstly choose IDF formulation to solve MDO problems because of its simplicity of implementation and not-bad performance. A single drawback of IDF is requiring more memory for local design variables and coupling variables. Adding cheap memories can save engineers valuable time and effort for complicated multi-level formulations and let them free out of no solution headache of Multi-Disciplinary Analysis (MDA) of the Multi-Disciplinary Feasible (MDF) formulation.
본 논문에서는 인메모리(In-memory) 병렬 분산 처리 시스템 Apache Spark(이하 Spark)를 활용하여 사용자에게 실시간 측위 정보를 제공할 수 있는 영상 기반 실내 위치인식 시스템을 제안한다. 제안하는 시스템에서는 사용자에게 실시간 측위 정보를 제공하기 위해서, Spark를 이용한 영상 특징점 추출 알고리즘의 병렬 분산화를 통해 알고리즘 연산 시간을 단축시킨다. 하지만 기존의 Spark 플랫폼에서는 영상 처리를 위한 인터페이스가 존재하지 않아, 영상 처리와 관련된 연산을 수행하는 것이 불가능하였다. 이에 본 논문에서는 Spark 영상 입출력 인터페이스를 구현하여 측위 연산을 위한 영상 처리를 Spark에서 수행 가능하게 하였다. 또한 무손실 압축(lossless compression)기법을 이용하여 특징점 기술자(descriptor)를 압축된 형태로 데이터베이스에 저장하여, 대용량의 실내 지도 데이터를 효율적으로 저장 및 관리하는 방법을 소개한다. 측위 실험은 실제 실내 환경에서 수행하였으며, 싱글 코어(Single-core) 시스템과의 성능 비교를 통해 제안하는 시스템이 최대 약 3.6배 단축된 시간으로 사용자에게 측위 정보를 제공 할 수 있다는 것을 입증하였다.
분산 메모리형의 병렬 프로그램에서는 프로세서들이 독립적으로 입출력을 처리하기 때문에 여러 유형의 파일 입출력 방식이 사용된다. 본 논문에서는 분산 메모리형 병렬 프로그램에서의 대용량 파일에 대한 효율적인 입출력 방식을 알아보기 위하여 다양한 방식을 구현하고 비교 분석하였다. 구현된 방식으로는 (i) NFS를 활용한 병렬 입출력 방식, (ii) 호스트 프로세서에서의 순차 입출력과 도메인 분산 방식, 그리고 (iii) 메시지 전송 전용 입출력(MPI-IO) 방식 등이 있다. 성능 분석을 위해서 별도의 파일 서버를 사용하였으며 한 대 및 두 대의 계산 클라이언트에서 다중 프로세서를 사용하였다. 비교 분석 결과, 입력의 경우에는 NFS 병렬 입력 방식이, 출력의 경우에는 도메인 전송을 통한 순차 출력 방식이 가장 효율적으로 나타났으며, 예상과는 다르게 메시지 전송 전용 입출력 방식의 성능이 가장 낮게 나왔다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제15권5호
/
pp.1649-1665
/
2021
In view of the low accuracy of the traditional FunkSVD algorithm, and in order to improve the computational efficiency of the algorithm, this paper proposes a parallel algorithm of improved FunkSVD based on Spark (SP-FD). Using RMSProp algorithm to improve the traditional FunkSVD algorithm. The improved FunkSVD algorithm can not only solve the problem of decreased accuracy caused by iterative oscillations but also alleviate the impact of data sparseness on the accuracy of the algorithm, thereby achieving the effect of improving the accuracy of the algorithm. And using the Spark big data computing framework to realize the parallelization of the improved algorithm, to use RDD for iterative calculation, and to store calculation data in the iterative process in distributed memory to speed up the iteration. The Cartesian product operation in the improved FunkSVD algorithm is divided into blocks to realize parallel calculation, thereby improving the calculation speed of the algorithm. Experiments on three standard data sets in terms of accuracy, execution time, and speedup show that the SP-FD algorithm not only improves the recommendation accuracy, shortens the calculation interval compared to the traditional FunkSVD and several other algorithms but also shows good parallel performance in a cluster environment with multiple nodes. The analysis of experimental results shows that the SP-FD algorithm improves the accuracy and parallel computing capability of the algorithm, which is better than the traditional FunkSVD algorithm.
부하 불균형은 병렬처리에 있어서 좋은 성능을 얻기 위한 주요한 방해 요소 중의 하나이다. 전역(全域) 부하균형 기법은 하나의 응용에서 발생된 병렬 태스크를 취급하는데 적절하지 않다. 동적 루프 스케줄링 기법은 공유 메모리 멀티프로세서 병렬구조에서 병렬 루프의 부하균형에 효과적인 것으로 알려져있다. 하지만 이 기법의 중앙집중적 특성은 워크스테이션 클러스터 환경에서 프로세서 수가 상대적으로 많지 않은 경우에도 병목현상을 일으킬 수 있는 요인이 된다. 워크스테이션 클러스터 환경에서의 통신 오버헤드는 공유 메모리 멀티프로세서 병렬 구조와 비교할 때 수십배의 차이가 생기기 때문이다. 더구나 병렬 루프에서 발생하는 단위 태스크가 불규칙적인 작업량을 갖는 경우에는 기본 루프 스케줄링 기법의 단점을 보완한 개선된 방법들을 적용할 수가 없다. 본 논문에서는 이러한 불규칙적인 작업량을 갖는 병렬루프를 서로 다른 성능을 갖는 워크스테이션들의 네트워크 환경에서 효율적으로 부하를 분배하기 위한 재구성 가능한 분산 부하 균형 기법을 제시한다. 이러한 재구성 가능한 기법은 전통적인 부하균형 방법과 함께 성능균형을 가능하게 함으로써 전체수행시간을 최소화할 수 있음을 보였다.
근래에 들어 풍부한 지식베이스를 구축하기 위한 대용량 RDFS 추론에 대한 관심이 높아지면서 기존의 단일 머신으로는 대용량 데이터의 추론 성능을 향상시키기에 한계가 있다. 그래서 분산 환경에서 의 RDFS 추론 엔진 개발이 활발히 연구되고 있다. 하지만 기존의 분산 환경 엔진은 실시간 처리가 불가능 하며 구현이 어렵고 반복 작업에 취약하다. 본 논문에서는 이러한 문제를 극복하기 위해 병렬 그래프 구조 를 사용한 인-메모리 분산 추론 엔진 구축 방법을 제안한다. 트리플 형태의 온톨로지는 기본적으로 그래프 구조를 가지고 있으므로 그래프 구조 기반의 추론 엔진을 설계하는 것이 직관적이다. 또한 그래프 구조를 활용하는 오퍼레이터를 활용하여 RDFS 추론 규칙을 구현함으로써 기존의 데이터 관점과 달리 그래프 구조의 관점에서 설계할 수 있다. 본 논문에서 제안한 추론 엔진을 평가하기 위해 LUBM1000(1억 3천 3백만 트리플, 17.9GB), LUBM3000(4억 1천 3백만 트리플, 54.3GB)에 대해 추론 속도를 실험을 하였으며 실 험결과, 비-인메모리 분산 추론 엔진보다 약 10배 정도 빠른 추론 성능을 보였다.
목적: 기존의 영상 재구성은 간소화된 투사 물리 모델을 사용하고 있다. 하지만 3D 재구성과 같은 실제적인 물리 모델은 시간이 많이 걸려서 임상에서 모든 데이터에 적용하기 힘들고, 복잡한 물리모델을 설명하기 위해 큰 메모리를 사용하면 한대의 일반적인 재구성 머신으로는 불가능하다. 개인 컴퓨터들에서도 큰 규모의 기술을 가능하게 하기위해, 병렬 연산을 이용한 빠른 재구성의 현실적인 분산메모리 모델을 제시한다. 대상 및 방법: 실제로 구현하는 가능성을 보기 위해 가상 컴퓨터들을 이용하여 선행 연구를 진행하였고, 다양한 가능성을 테스트하기 위해 상용서비스를 하고 있는 슈퍼컴퓨터(Tachyon)에서 성능 테스트를 하였다. 가장 많이 사용되는 2D 투사 영상과 실제적인 물리 모델인 3D 응답라인을 이용한 기댓값 최대화 알고리즘을 테스트하였다. 스터디 중 특정 반복횟수 이후에 속도가 최대 6배까지 느려지는 현상이 발견되어 컴파일러 최적화를 통해 병렬 효율의 극대화를 꾀하였다. 결과: Linux에서 MPICH와 NFS를 이용하여, 여러 컴퓨터에서 하나의 프로그램으로 분산 연산이 가능하였다. 병렬 연산을 했을 때 동일한 반복 연산에서 재구성된 영상간의 차이가 실수의 유효숫자(6bit) 정도임을 확인하였다. 2배의 연상장치를 사용했을 때 1.96배의 좋은 병렬화 효율을 보여주었다. 반복 연산 횟수가 증가함에 따라 느려지는 현상은 SSE를 이용한 Vectorization 방법을 사용했을 때 해결할 수 있었다. 결론: 이번 연구를 통해 일반 컴퓨터들을 이용한 현실적인 병렬 컴퓨터 시스템을 구성하여, 작은 메모리의 단일 일반 컴퓨터로는 불가능한 간단화 할 수 없는 복잡한 물리 과정도 영상 재구성 방법에 사용 가능하게 되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.