• 제목/요약/키워드: In-line Valve

Search Result 195, Processing Time 0.025 seconds

Energy Saving Heating Control System Using the Power Line Communication Modem for a Valve Controller (밸브제어기용 전력선 통신 모뎀을 이용한 에너지 절약형 난방제어 시스템)

  • Kim, Myung-Ho;Lee, Tae-Bong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.123-127
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputted from the temperature sensor and the user to the valve controller. The valve controller receives these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, It is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

Power Line Communication Heating Control System by LonWorks (LonWorks를 이용한 전력선 통신 난방제어 시스템)

  • Kim, Myung-Ho;Kim, Sun-Boo
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.1150-1155
    • /
    • 2006
  • In a heating control system, the indoor temperature controller transfers temperature signals inputed from the temperature sensor and the user to the valve controller. The valve controller recieves these signals then the valve controller controls the valve driving motor on two position control and controls the indoor temperature. When setting up a new valve driving motor from a long distance it is necessary to set up a new valve controller. But occasionary, due to construction, it is impossible to wire between the existing valve controller and the new valve controller. In this situation, the new and existing valve controllers can communicate via power line communication. In this paper it is proposed heating control system controls on two position control via power line communication.

  • PDF

A Study on the Phase Bandwidth Frequency of a Directional Control Valve Based on the Hydraulic Line Pressure (배관 압력을 이용한 방향제어밸브 위상각 대역폭 주파수 측정에 관한 연구)

  • Kim, Sungdong;Lee, Jung-eun;Shin, Daeyoung
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Spool displacement of a direction control valve is the standard signal to measure the bandwidth frequency of the direction control valve. When the spool displacement signal is not available, it is suggested in this study to use the metering hydraulic line as an alternative way to measure - 90 degree phase bandwidth frequency of the hydraulic direction control valve. Dynamics of the hydraulic line is composed of inertia, capacitance, and friction effects. The effect of oil inertia is dominant in common hydraulic line dynamics and the line dynamics is close to a derivative action in a range of high frequency; such as a range of bandwidth frequency of common directional control valves. Phase difference between spool displacement and line load pressure is nearly constant as a valve close to 90 degree. If phase difference is compensated from the phase between valve input and pressure, compensated phase may be almost same as the phase of spool displacement that is a standard signal to measure phase bandwidth frequency of the directional control valve. A series of experiments were conducted to examine the possibility of using line pressure in to measure phase bandwidth frequency of a directional control valve. Phase bandwidth frequency could be measured with relatively high precision based on metering hydraulic line technique and it reveals consistent results even when valve input, oil temperature, and supply pressure change.

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

An Analysis of the Dynamic Characteristics of a Spool Type Pressure Control Valve (스풀형 압력제어밸브의 동특성 해석)

  • Moon, Kang Hyun;Huh, Jun Young
    • Journal of Drive and Control
    • /
    • v.15 no.4
    • /
    • pp.61-66
    • /
    • 2018
  • Almost every hydraulic system is equipped with a pressure relief valve, to maintain working pressure of the system at a pre-determined level. Thus, dynamic characteristics of such a relief valve, in conjunction with other hydraulic components, are important in designing the hydraulic control system. The single stage pressure relief valve is dynamically undesirable, due to relatively low viscous damping, that causes high frequency oscillations. This problem is overcome by introducing orifices in the inner pilot line, and drain line. In this study, for the single stage spool type pressure relief valve, the system equations were derived through an adequate linearisation and several simplifications were made, to use the transfer function formulation technique. All coefficients were evaluated and used, to make some results by using Matlab software. Results of analysis are compared with experimental results. In this study, parameters affecting stability of valve design are determined and suggested relative to the design.

An Experimental Study on Water-Hammer Effect for Spacecraft Propulsion System (인공위성 추진계통 관로내의 수격효과에 관한 실험적 연구)

  • Kwon, Ki-Chul;Lee, Eun-Sang;Park, Sang-Min;Kang, Shin-Jae;Rho, Byung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.288-293
    • /
    • 2001
  • This paper presents the water-hammer effect due to the rapid opening and closing of isolation valve and thruster valve in the spacecraft propulsion system. The single propellant feed system was modeled to investigate the maximum peak pressure due to the water-hammer effect. The test parameters are tank supply pressure, shape and throat length of orifice and line length. Kerosene was used as the inert simulant propellant liquid instead of hydrazine. As downstream line length after isolation valve increased from 1.5 to 2.5m, the maximum line-filling water-hammer peak pressure decreased, but the average time interval between peak pressures increased. The maximum line-filling water-hammer peak pressure with orifice was lower than without orifice, and the maximum line-filling water-hammer peak pressure with orifice at the back of isolation valve was lower than with orifice in front of isolation valve. Without orifice, the maximum water-hammer peak pressure due to the rapid opening and closing of the thruster valve was about 126% of tank supply pressure. With orifice, it decreased. As orifice throat length increased, it decreased. The maximum water-hammer peak pressure due to the rapid closing of the thruster valve with converging-diverging orifice was lower than normal orifice. It was found that the orifice as a means of pressure drop was very effective to reduce the water hammer peak pressure at the thruster valve. The results of this study can be used for the design of spacecraft liquid propulsion feed system.

  • PDF

Waterhammer For In-line Booster Pump (직결식 펌프의 수격현상)

  • Kim, S C.;Lee, K. B.;Kim, K. Y.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.208-216
    • /
    • 2004
  • The waterhammer occured when the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity. The field tests of the waterhammer were carried out for PanGyo booster pumping station. The PanGyo pumuing station was installed booster pump of 6 sets and in-line pump of 2 sets. The main surge suppression device was equipped with the pump control valve and the surge relief valve as auxiliary. However, the pump control valve had not early controlled in the planned closing mode, and the slamming occurred to the valve of which abruptly closed during the large reverse flow. Because the pressure wave caused by the pump failure was superposed on the slam surge, the upsurge increased so extremely that the shaft of the valve was damaged. After the addition surge suppression device was equipped with air chamber. Further more in-line pump is needed surge suppression device that the pumping station acquired the safety and reliability for the pressure surge.

  • PDF

Optimal Design of Dual-Structured Disc of a Safety-Valve for the Specialized Pressure Vessel Considering Thermal Expansion (특수 압력요기용 안전밸브의 2중 구조로 디스크의 최적설계)

  • Kim, Chang-Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.4
    • /
    • pp.81-85
    • /
    • 2007
  • A safety valve is used for protecting the pressure vessel and facilities by discharging the operating fluid into the valve from the accident when the pressure is over the designated value. The fluid is sulfurous acid and nitric acid. etc. in the semi-conductor assembly line. Thus the valve elements material must be acid resistance. Teflon, which is used generally as inner parts of a valve, tends to easily sticks to sliding surface by thermal expansion under high temperature. Some studies are performed to change teflon to another material and shape to have a better fluidity under the condition. The analysis of the thermal expansion is conducted by commercial FEM software to improve the problems. Boundary conditions were temperature and load in this study. From the analysis, the thermal expansion of stainless steel is verified to be lower than that of teflon under high temperature. Thus coupled teflon/stainless steel-made valve is applied to assembly line without danger due to thermal expansion.

  • PDF

A Study on the Pressure Surge of ABS Hydraulic System (ABS 유압 장치의 유충 현상에 관한 연구)

  • 김병우;송창섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.140-147
    • /
    • 2001
  • The solenoid valve in ABS hydraulics, modulator is a two directional on-off valve and is controlled by around 100Hz high speed pulse width modulation. When the inlet valve is switched from open state to closed state, there are braking force degration, noise and vibration due to pressure surge phenomena in the hydraulic line and wheel cylinder. In this study, identifies pressure surge phenomenon in the braking process of a ABS, and investigates the way to reduce the phenomenon. For the purpose theoretical analysis on the pressure surge in the closed state hydraulic line, characteristic curve method based on wave equation was utilized. During this analysis, we could find pressure surge characteristics change due to hydraulic line change and PWM control conditions. In conclusion, by using the results of this study for the pressure surge prediction and reduction method, we could expect braking performance enhancement in Anti-Lock Braking System.

  • PDF

Electronic Control of Braking Force Distribution for Vehicles Using a Direct Adaptive Fuzzy Controller

  • Kim, Hunmo;Kim, Seungdae;Sung, Yoon-Gyeoung
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.66-80
    • /
    • 2001
  • In brake systems, a proportioning valve(P. V), which reduces the brake line pressure on each wheel cylinder for the anti-locking of rear wheels, is closely related to the safety of vehicles. However, it is impossible for current P. V. s to completely control brake line pressure because, mechanically, it is an open loop control system. In this paper we describe an electronic brake force distribution system using a direct adaptive fuzzy controller in order to completely control brake line pressure using a closed loop control system. The objective of the electronic brake force distribution system is to change the cut-in-pressure and the valve slop of the P. V in order to obtain better performance of the brake system than with mechanical systems.

  • PDF