• Title/Summary/Keyword: In-line Inspection

Search Result 535, Processing Time 0.034 seconds

An Inspection Method for Injection Molded Automotive Parts using Line-Scan (라인스캔을 이용한 자동차 사출성형 부품의 검사 기술)

  • Yun, Jae-Sik;Kim, Jin-Wook;Huh, Man-Tak;Kim, Seok-Tae
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.05a
    • /
    • pp.805-807
    • /
    • 2011
  • In this paper, we propose a method to inspect defects of injection molded automotive parts. In order to inspect them, we developed and used a line detection algorithm and a defect analysis algorithm. The line detection algorithm defines center point of a laser line and the inspection algorithm determines the defects of automotive parts using pattern data of inspected objects and the data results from the line detection algorithm. We evaluated the accuracy and the processing time of inspection and they showed good performance.

  • PDF

Image Processing Technique for an Automatic Inspection of the Surface Outlook of High Speed Moving Plate. (고속 이동 판재의 자동 외관 검사를 위한 영상처리)

  • 부광석;임성현;조현춘
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.219-219
    • /
    • 2000
  • A Plate type pipe is used for heat exchange in radiator of a vehicle. The pipe has several rooms through which water flows and heat is dissipated into outside . In the case that there are small holes, cracks or some scratches on the plate, the radiators lost their functions due to Leakage. This may result in overheating of engine in a car. Thus, we need to perform the entire inspection of the plate type pipe in advance before assembling the radiator. In manufacturing process of the plate type pipe, the productive speed is very high and that may be performed continuously. So, there is no room to perform the outlook inspection by typical image processing techniques. This paper proposes a new method to inspect the outlook surface of the plate type pipe automatically with high speed. Especially, the sequential processing technique of an algorithm which detects defects on the surfaces of the plate type pipe is proposed for line scan camera which captures line image. To evaluate the inspection performance, a series of experiments is performed.

  • PDF

Development of Pipe Fault Inspection System using Computer Vision (컴퓨터 비젼을 이용한 파이프 불량 검사시스템 개발)

  • 박찬호;양순용;안경관;오현옥;이병룡
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.10
    • /
    • pp.822-831
    • /
    • 2003
  • A computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and the radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation is introduced for line detection. The dimension of inner and outer radius of pipe is calculated by the proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle, by which pipes with wrong end-shape can be classified and removed.

Development of Automated Surface Inspection System using the Computer V (컴퓨터 비젼을 이용한 표면결함검사장치 개발)

  • Lee, Jong-Hak;Jung, Jin-Yang
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.668-670
    • /
    • 1999
  • We have developed a automatic surface inspection system for cold Rolled strips in steel making process for several years. We have experienced the various kinds of surface inspection systems, including linear CCD camera type and the laser type inspection system which was installed in cold rolled strips production lines. But, we did not satisfied with these inspection systems owing to insufficient detection and classification rate, real time processing performance and limited line speed of real production lines. In order to increase detection and computing power, we have used the Dark Field illumination with Infra_Red LED, Bright Field illumination with Xenon Lamp, Parallel Computing Processor with Area typed CCD camera and full software based image processing technique for the ease up_grading and maintenance. In this paper, we introduced the automatic inspection system and real time image processing technique using the Object Detection, Defect Detection, Classification algorithms. As a result of experiment, under the situation of the high speed processed line(max 1000 meter per minute) defect detection is above 90% for all occurred defects in real line, defect name classification rate is about 80% for most frequently occurred 8 defect, and defect grade classification rate is 84% for name classified defect.

  • PDF

A Study about Pipe Shape Inspection System for Computer Vision (컴퓨터 비젼을 이용한 파이프 형상 검사시스템에 관한 연구)

  • 김형석;이병룡;양순용;안경관;오현옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.946-950
    • /
    • 2003
  • In this paper, a computer-vision based pipe shape inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle. by which pipes with wrong end-shape can be classified removed.

  • PDF

A Study about Pipe inspection System for Computer Vision (컴퓨터 비젼을 이용한 파이프 검사시스템에 대한 연구)

  • 박찬호;이병룡;양순용;안경관;오현옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.521-525
    • /
    • 2002
  • In this paper, a computer-vision based pipe-inspection algorithm is developed. The algorithm uses the modified Hough transformation and a line-scanning approach to identify the edge line and radius of the pipe image, from which the eccentricity and dimension of the pipe-end is calculated. Line and circle detection was performed using Laplace operator with input image, which are acquired from the front and side cameras. In order to minimize the memory usage and the processing time, a clustering method with the modified Hough transformation for line detection. The dimension of inner and outer radius of pipe is calculated by proposed line-scanning method. The method scans several lines along the X and Y axes, calculating the eccentricity of inner and outer circle, by which pipes with wrong end-shape can be classified removed.

  • PDF

A Path Planning Method for Automatic Optical Inspection Machines with Line Scan Camera (라인스캔 카메라 형 광학검사기틀 위한 경로계획 방법)

  • Chae, Ho-Byeong;Kim, Hwan-Yong;Park, Tae-Hyoung
    • Proceedings of the KIEE Conference
    • /
    • 2007.10a
    • /
    • pp.333-334
    • /
    • 2007
  • We propose a path planning method to decrease a inspection lead time of line scan camera in SMT(surface mount technology) in-line system. The inspection window area of printed circuit board should be minimized to consider the FOV(field of view) of line scan camera so that line scan inspector is going to find a optimal solution of path planning. We propose one of the hierarchical clustrering algorithm for a given board. Comparative simulation results are presented to verify the usefulness of proposed method.

  • PDF

A High-speed Automatic Precision Inspection System for Bolts Defects (볼트 결함 판별을 위한 고속 정밀 검사 장치 개발)

  • Oh, Choon-Suk;Lee, Hyun-Min
    • The KIPS Transactions:PartB
    • /
    • v.10B no.3
    • /
    • pp.305-310
    • /
    • 2003
  • In this paper we deal with the system design and development of the high-speed automatic precision inspection for the defects of bolts. In order to inspect bolts continuously, we used the conveyor system. Also, this conveyor includes the servo motor and encoder to achieve accurate movement. According to encoder signal, line-scan camera captures the line-by-line image of bolts and after one frame is accumulated, various parameters are calculated and inspected by image processing algorithms. Experimental results using the developed facilities are presented to demonstrate the efficiency of the proposed equipment.

Bare Glass Inspection System using Line Scan Camera

  • Baek, Gyeoung-Hun;Cho, Seog-Bin;Jung, Sung-Yoon;Baek, Kwang-Ryul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1565-1567
    • /
    • 2004
  • Various defects are found in FPD (Flat Panel Display) manufacturing process. So detecting these defects early and reprocessing them is an important factor that reduces the cost of production. In this paper, the bare glass inspection system for the FPD which is the early process inspection system in the FPD manufacturing process is designed and implemented using the high performance and accuracy CCD line scan camera. For the preprocessing of the high speed line image data, the Image Processing Part (IPP) is designed and implemented using high performance DSP (Digital signal Processor), FIFO (First in First out), FPGA (Field Programmable Gate Array) and the Data Management and System Control part are implemented using ARM (Advanced RISC Machine) processor to control many IPP and cameras and to provide remote users with processed data. For evaluating implemented system, experiment environment which has an area camera for reviewing and moving shelf is made.

  • PDF