• Title/Summary/Keyword: In-hand manipulation

Search Result 124, Processing Time 0.021 seconds

A Study on Image Integrity Verification Based on RSA and Hash Function (RSA와 해시 함수 기반 이미지 무결성 검증에 관한 연구)

  • Woo, Chan-Il;Goo, Eun-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.878-883
    • /
    • 2020
  • Cryptographic algorithms are used to prevent the illegal manipulation of data. They are divided into public-key cryptosystems and symmetric-key cryptosystems. Public-key cryptosystems require considerable time for encryption and decryption compared to symmetric-key cryptosystem. On the other hand, key management, and delivery are easier for public-key cryptosystems than symmetric-key cryptosystems because different keys are used for encryption and decryption. Furthermore, hash functions are being used very effectively to verify the integrity of the digital content, as they always generate output with a fixed size using the data of various sizes as input. This paper proposes a method using RSA public-key cryptography and a hash function to determine if a digital image is deformed or not and to detect the manipulated location. In the proposed method, the entire image is divided into several blocks, 64×64 in size. The watermark is then allocated to each block to verify the deformation of the data. When deformation occurs, the manipulated pixel will be divided into smaller 4×4 sub-blocks, and each block will have a watermark to detect the location. The safety of the proposed method depends on the security of the cryptographic algorithm and the hash function.

The Usefulness of Product Display of Online Store by the Product Type of Usage Situation - Focusing on the moderate effect of the product portability - (사용상황별 제품유형에 따른 온라인 점포 제품디스플레이의 유용성 - 제품 휴대성의 조절효과를 중심으로 -)

  • Lee, Dong-Il;Choi, Seung-Hoon
    • Journal of Distribution Research
    • /
    • v.16 no.2
    • /
    • pp.1-24
    • /
    • 2011
  • 1. Introduction: Contrast to the offline purchasing environment, online store cannot offer the sense of touch or direct visual information of its product to the consumers. So the builder of the online shopping mall should provide more concrete and detailed product information(Kim 2008), and Alba (1997) also predicted that the quality of the offered information is determined by the post-purchase consumer satisfaction. In practice, many fashion and apparel online shopping malls offer the picture information with the product on the real person model to enhance the usefulness of product information. On the other virtual product experience has been suggested to the ways of overcoming the online consumers' limited perceptual capability (Jiang & Benbasat 2005). However, the adoption and the facilitation of the virtual reality tools requires high investment and technical specialty compared to the text/picture product information offerings (Shaffer 2006). This could make the entry barrier to the online shopping to the small retailers and sometimes it could be demanding high level of consumers' perceptual efforts. So the expensive technological solution could affects negatively to the consumer decision making processes. Nevertheless, most of the previous research on the online product information provision suggests the VR be the more effective tools. 2. Research Model and Hypothesis: Presented in

    , research model suggests VR effect could be moderated by the product types by the usage situations. Product types could be defined as the portable product and installed product, and the information offering type as still picture of the product, picture of the product with the real-person model and VR. 3. Methods and Results: 3.1. Experimental design and measured variables We designed the 2(product types) X 3(product information types) experimental setting and measured dependent variables such as information usefulness, attitude toward the shopping mall, overall product quality, purchase intention and the revisiting intention. In the case of information usefulness and attitude toward the shopping mall were measured by multi-item scale. As a result of reliability test, Cronbach's Alpha value of each variable shows more than 0.6. Thus, we ensured that the internal consistency of items. 3.2. Manipulation check The main concern of this study is to verify the moderate effect by the product type of usage situation. indicates that our experimental manipulation of the moderate effect of the product type was successful. 3.3. Results As
    indicates, there was a significant main effect on the only one dependent variable(attitude toward the shopping mall) by the information types. As predicted, VR has highest mean value compared to other information types. Thus, H1 was partially supported. However, main effect by the product types was not found. To evaluate H2 and H3, a two-way ANOVA was conducted. As
    indicates, there exist the interaction effects on the three dependent variables(information usefulness, overall product quality and purchase intention) by the information types and the product types. As predicted, picture of the product with the real-person model has highest mean among the information types in the case of portable product. On the other hand, VR has highest mean among the information types in the case of installed product. Thus, H2 and H3 was supported. 4. Implications: The present study found the moderate effect by the product type of usage situation. Based on the findings the following managerial implications are asserted. First, it was found that information types are affect only the attitude toward the shopping mall. The meaning of this finding is that VR effects are not enough to understand the product itself. Therefore, we must consider when and how to use this VR tools. Second, it was found that there exist the interaction effects on the information usefulness, overall product quality and purchase intention. This finding suggests that consideration of usage situation helps consumer's understanding of product and promotes their purchase intention. In conclusion, not only product attributes but also product usage situations must be fully considered by the online retailers when they want to meet the needs of consumers.

  • PDF
  • A Study on Improvement of Collaborative Filtering Based on Implicit User Feedback Using RFM Multidimensional Analysis (RFM 다차원 분석 기법을 활용한 암시적 사용자 피드백 기반 협업 필터링 개선 연구)

    • Lee, Jae-Seong;Kim, Jaeyoung;Kang, Byeongwook
      • Journal of Intelligence and Information Systems
      • /
      • v.25 no.1
      • /
      • pp.139-161
      • /
      • 2019
    • The utilization of the e-commerce market has become a common life style in today. It has become important part to know where and how to make reasonable purchases of good quality products for customers. This change in purchase psychology tends to make it difficult for customers to make purchasing decisions in vast amounts of information. In this case, the recommendation system has the effect of reducing the cost of information retrieval and improving the satisfaction by analyzing the purchasing behavior of the customer. Amazon and Netflix are considered to be the well-known examples of sales marketing using the recommendation system. In the case of Amazon, 60% of the recommendation is made by purchasing goods, and 35% of the sales increase was achieved. Netflix, on the other hand, found that 75% of movie recommendations were made using services. This personalization technique is considered to be one of the key strategies for one-to-one marketing that can be useful in online markets where salespeople do not exist. Recommendation techniques that are mainly used in recommendation systems today include collaborative filtering and content-based filtering. Furthermore, hybrid techniques and association rules that use these techniques in combination are also being used in various fields. Of these, collaborative filtering recommendation techniques are the most popular today. Collaborative filtering is a method of recommending products preferred by neighbors who have similar preferences or purchasing behavior, based on the assumption that users who have exhibited similar tendencies in purchasing or evaluating products in the past will have a similar tendency to other products. However, most of the existed systems are recommended only within the same category of products such as books and movies. This is because the recommendation system estimates the purchase satisfaction about new item which have never been bought yet using customer's purchase rating points of a similar commodity based on the transaction data. In addition, there is a problem about the reliability of purchase ratings used in the recommendation system. Reliability of customer purchase ratings is causing serious problems. In particular, 'Compensatory Review' refers to the intentional manipulation of a customer purchase rating by a company intervention. In fact, Amazon has been hard-pressed for these "compassionate reviews" since 2016 and has worked hard to reduce false information and increase credibility. The survey showed that the average rating for products with 'Compensated Review' was higher than those without 'Compensation Review'. And it turns out that 'Compensatory Review' is about 12 times less likely to give the lowest rating, and about 4 times less likely to leave a critical opinion. As such, customer purchase ratings are full of various noises. This problem is directly related to the performance of recommendation systems aimed at maximizing profits by attracting highly satisfied customers in most e-commerce transactions. In this study, we propose the possibility of using new indicators that can objectively substitute existing customer 's purchase ratings by using RFM multi-dimensional analysis technique to solve a series of problems. RFM multi-dimensional analysis technique is the most widely used analytical method in customer relationship management marketing(CRM), and is a data analysis method for selecting customers who are likely to purchase goods. As a result of verifying the actual purchase history data using the relevant index, the accuracy was as high as about 55%. This is a result of recommending a total of 4,386 different types of products that have never been bought before, thus the verification result means relatively high accuracy and utilization value. And this study suggests the possibility of general recommendation system that can be applied to various offline product data. If additional data is acquired in the future, the accuracy of the proposed recommendation system can be improved.

    A Ranking Algorithm for Semantic Web Resources: A Class-oriented Approach (시맨틱 웹 자원의 랭킹을 위한 알고리즘: 클래스중심 접근방법)

    • Rho, Sang-Kyu;Park, Hyun-Jung;Park, Jin-Soo
      • Asia pacific journal of information systems
      • /
      • v.17 no.4
      • /
      • pp.31-59
      • /
      • 2007
    • We frequently use search engines to find relevant information in the Web but still end up with too much information. In order to solve this problem of information overload, ranking algorithms have been applied to various domains. As more information will be available in the future, effectively and efficiently ranking search results will become more critical. In this paper, we propose a ranking algorithm for the Semantic Web resources, specifically RDF resources. Traditionally, the importance of a particular Web page is estimated based on the number of key words found in the page, which is subject to manipulation. In contrast, link analysis methods such as Google's PageRank capitalize on the information which is inherent in the link structure of the Web graph. PageRank considers a certain page highly important if it is referred to by many other pages. The degree of the importance also increases if the importance of the referring pages is high. Kleinberg's algorithm is another link-structure based ranking algorithm for Web pages. Unlike PageRank, Kleinberg's algorithm utilizes two kinds of scores: the authority score and the hub score. If a page has a high authority score, it is an authority on a given topic and many pages refer to it. A page with a high hub score links to many authoritative pages. As mentioned above, the link-structure based ranking method has been playing an essential role in World Wide Web(WWW), and nowadays, many people recognize the effectiveness and efficiency of it. On the other hand, as Resource Description Framework(RDF) data model forms the foundation of the Semantic Web, any information in the Semantic Web can be expressed with RDF graph, making the ranking algorithm for RDF knowledge bases greatly important. The RDF graph consists of nodes and directional links similar to the Web graph. As a result, the link-structure based ranking method seems to be highly applicable to ranking the Semantic Web resources. However, the information space of the Semantic Web is more complex than that of WWW. For instance, WWW can be considered as one huge class, i.e., a collection of Web pages, which has only a recursive property, i.e., a 'refers to' property corresponding to the hyperlinks. However, the Semantic Web encompasses various kinds of classes and properties, and consequently, ranking methods used in WWW should be modified to reflect the complexity of the information space in the Semantic Web. Previous research addressed the ranking problem of query results retrieved from RDF knowledge bases. Mukherjea and Bamba modified Kleinberg's algorithm in order to apply their algorithm to rank the Semantic Web resources. They defined the objectivity score and the subjectivity score of a resource, which correspond to the authority score and the hub score of Kleinberg's, respectively. They concentrated on the diversity of properties and introduced property weights to control the influence of a resource on another resource depending on the characteristic of the property linking the two resources. A node with a high objectivity score becomes the object of many RDF triples, and a node with a high subjectivity score becomes the subject of many RDF triples. They developed several kinds of Semantic Web systems in order to validate their technique and showed some experimental results verifying the applicability of their method to the Semantic Web. Despite their efforts, however, there remained some limitations which they reported in their paper. First, their algorithm is useful only when a Semantic Web system represents most of the knowledge pertaining to a certain domain. In other words, the ratio of links to nodes should be high, or overall resources should be described in detail, to a certain degree for their algorithm to properly work. Second, a Tightly-Knit Community(TKC) effect, the phenomenon that pages which are less important but yet densely connected have higher scores than the ones that are more important but sparsely connected, remains as problematic. Third, a resource may have a high score, not because it is actually important, but simply because it is very common and as a consequence it has many links pointing to it. In this paper, we examine such ranking problems from a novel perspective and propose a new algorithm which can solve the problems under the previous studies. Our proposed method is based on a class-oriented approach. In contrast to the predicate-oriented approach entertained by the previous research, a user, under our approach, determines the weights of a property by comparing its relative significance to the other properties when evaluating the importance of resources in a specific class. This approach stems from the idea that most queries are supposed to find resources belonging to the same class in the Semantic Web, which consists of many heterogeneous classes in RDF Schema. This approach closely reflects the way that people, in the real world, evaluate something, and will turn out to be superior to the predicate-oriented approach for the Semantic Web. Our proposed algorithm can resolve the TKC(Tightly Knit Community) effect, and further can shed lights on other limitations posed by the previous research. In addition, we propose two ways to incorporate data-type properties which have not been employed even in the case when they have some significance on the resource importance. We designed an experiment to show the effectiveness of our proposed algorithm and the validity of ranking results, which was not tried ever in previous research. We also conducted a comprehensive mathematical analysis, which was overlooked in previous research. The mathematical analysis enabled us to simplify the calculation procedure. Finally, we summarize our experimental results and discuss further research issues.


    (34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
    Copyright (C) KISTI. All Rights Reserved.