• Title/Summary/Keyword: In-grid Condition

Search Result 592, Processing Time 0.034 seconds

Application simulations as numerical laboratory for large diameter rockfill materials (대입경 락필재료에 대한 수치시험실 활용해석)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.852-855
    • /
    • 2010
  • Numerical simulations for large scale triaxial tests with large diameter rockfill materials are conducted using distinct element method. For generation of compacted assembly with specific grain size distribution and initial material porosity, the clump logic method and expansion of generated particles are adapted. With micro parameters which are chosen by calibration process, discrete particle modelling of triaxial test in case of other confining stress and cyclic loading condition were conducted. Also numerical simulations of fluid injection into particulate materials were conducted to observe cavity initiation and propagation using distinct element method. The fluid scheme solves the continuity and Navior-Stokes equations numerically, then derives pressure and velocity vectors for fixed grid by considering the existence of particles within the fluid cell.

  • PDF

An Extraction Technique of Automatic Recognizing Regions on Power Distribution Facility Map by Partial Extension (부분확장에 의한 배전설비도면의 자동인식 대상영역 추출 방법)

  • Kim, Gye-Young;Lee, Bong-Jae;Cho, Seon-Ku;Woo, Hee-Gon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.10
    • /
    • pp.1349-1355
    • /
    • 1999
  • A power distribution facility map is drawn on cadastral map. Besides, grid lines are added on the map for sectionalization. For automatic recognition of the map, we first extract recognizing regions. In this paper, we propose an extraction method of recognizing regions by partially extending thinned image. The proposed method is consist of three phases, binarization phase, thinning phase and partial extending phase. The first phase generate a binary image using threshold value which is obtained by histogram analysis. The binary image contains many part of recognizing regions, but not all. The second phase generate thinned image which is generated by appling thinning operator to the binary image. And the third phase extends thinned image from terminal point until satisfying termination condition. The proposed method is tested on several power distribution facility maps, and the results are presented.

  • PDF

Numerical Simulations of Flow Characteristics around a Hull Advancing near the Critical Speed in Restricted Water Condition (제한수로를 임계속도 근방에서 항주하는 선체 주위의 유동특성에 관한 수치해석연구)

  • Kim S. Y.;Lee Y. G.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.175-184
    • /
    • 1998
  • 본 연구에서는 제한된 수로를 운항하는 선체주위의 유동특성에 관한 연구를 수행하고자 하였다. 일반적으로 운하 또는 하천을 운항하는 선박의 경우 제한된 수심의 영향으로 천수효과가 발생하게 된다. 이러한 천수의 효과와 제한된 폭의 영향으로 선수부분에서 선체보다 선행하는 파도가 전파되어 나아가기도 하며, 이로 인하여 선박은 보다 많은 조파저항을 받게 된다. 본 연구에서는 임의의 형상을 갖는 선체가 폭과 수심이 제한된 운하를 임계속도 근처에서 운항하는 경우에 관하여 폭과 수심을 변화시켜가며 수치계산을 수행하여, 제한수로에서의 임의의 선체주위의 유동특성을 관찰하고자 하였다. 수치계산은 MAC(Marker And Cell)법을 기초로 한 유한차분법(Finite Difference Method)을 사용하였으며, 계산에 사용된 격자계는 임의의 형상에 관하여 격자생성이 용이한 직사각형 격자계(Rectangular Grid System)를 사용하였다.

  • PDF

A Semi-Implicit Method for the Analysis of Two-Dimensional Fluid Flow with Moving Free Surfaces

  • Lee, Woo-Il;Park, Jong-Sun;Kim, Min-Soo;Lee, Joon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.720-731
    • /
    • 2002
  • Flow with moving free surfaces is analyzed with an the Eulerian coordinate system. This study proposes a semi-implicit filling algorithm using VOF in which the PLIC (Piecewise Linear Interface Calculation) -type interface reconstruction method and the donor-acceptor-type front advancing scheme are adopted. Also, a new scheme using extrapolation of the stream function is proposed to find the velocity of the node that newly enters the computational domain. The effect of wall boundary conditions on the flow field and temperature field is examined by numerically solving a two-dimensional casting process.

Numerical Study on Effects of Geometrical Variables on Performance of A Centrifugal Compressor (원심압축기의 성능에 미치는 형상변수들의 영향에 대한 수치적 연구)

  • Kim, Jin-Hyuk;Kim, Kwang-Yong
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.152-155
    • /
    • 2008
  • In this paper, the effect of modification of geometric variables on the performance of a centrifugal compressor blade has been studied numerically. The compressor contains six main blades and six splitter blades. Reynolds averaged Navier-Stokes (RANS) equations with shear stress turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analysis. The design variables from blade lean angle at tip and middle of the blade have been modified. The isentropic blade efficiency and pressure have been predicted with the variation of the variables. Frozen rotor simulation is performed and adiabatic wall condition has been used. One of the six blades of compressor has been used for simulation to reduce the computational load. Optimum number of meshes has been selected by grid-dependency test, and this is used for all the simulations with changing geometric variables. The detailed flow analysis results have been reported as well as the effects of the variables.

  • PDF

Estimation of Maximum Inundation Zone due to Tsunamis with Moving Boundary (이동경계를 이용한 지진해일의 최대범람구역 추산)

  • 조용식;서승원
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.100-108
    • /
    • 2001
  • Along the shoreline a special treatment is required to simulate movement of periodic waves such as tsunami and tide because of continuous movement of shoreline as waves rise and recede. A moving boundary treatment is first proposed to track the movement of shoreline in this study. The treatment is then employed to obtain a maximum inundation area to be used for mitigation of coastal flooding. The obtained maximum inundation zone for a specific location is compared to that of available observed data. A reasonable agreement is observed.

  • PDF

Numerical Analysis of Unsteady Thermo-Fluid Behavior for Launched Body using Chimera Mesh (키메라 격자를 이용한 발사체의 비정상 열유동해석)

  • Son, D.H.;Sohn, C.H.;Ha, J.H.
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.1013-1018
    • /
    • 2010
  • This paper presents a numerical evaluation of the launch dynamics and thermo-fluid phenomena for gas generator launch eject system. The existing gas dynamic model for launching eject body used ideal gas and adiabatic assumption with empirical energy loss model. In present study, a turbulent Navier-Stokes solver with CHIMERA mesh is employed to predict the detail unsteady thermo-fluid dynamics for the launched body. The calculation results show that proper grid number is necessary for good agreement with experimental data. The important effects for accurate prediction are a gap distance and thermal boundary condition on the wall. The computational results show good agreement with experiment data.

Optimum Tuning of Current Controller for Grid-connected Inverter under the Distorted Voltage Condition in Distribution System (배전계통 전압왜곡 하에서의 연계인버터 전류제어기의 최적조정)

  • Ahn, Jong-Bo;Hwang, Ki-Hyun;Park, June-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2005.07a
    • /
    • pp.532-534
    • /
    • 2005
  • 본 논문은 신${\cdot}$재생에너지원을 이용한 분산전원용 계통연계 인버터의 전류고조파저감에 관한 연구로서 전류고조파는 진력풍질 측면에서 중요한 요소 중의 하나이나 전원전압의 불평형, 왜곡 및 부적절한 전류제어기의 조정 등의 원인으로 인하여 이런 목적의 달성이 어렵게 된다. 전류제어기법 중에는 동기좌표게 상에서 동작하는 전향보상부 PI 제어기가 일반적으로 사용되고 있으며 본 논문에서는 전원전압 왜곡 하에서 전류제어기 이득과 전류고조파의 관계를 분석하고 Particle Swarm Optimization(PSO) 알고리즘을 이용하여 PI 제어기를 최적 조정하는 방법을 제안하였으며 모의시험과 적용실험을 통하여 그 유용성을 입증하였다.

  • PDF

Experimental Study on the Load Transfer Behavior of Steel Grid Composite Deck Joint (격자형 강합성 바닥판 이음부의 하중전달 거동에 관한 실험적 연구)

  • Shin, Hyun-Seop
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.4
    • /
    • pp.10-21
    • /
    • 2014
  • The joint of prefabricated steel grid composite deck is composed of concrete shear key and high-tension bolts. The flexural and shear strength of the joint were experimentally evaluated only by the bending and push-out test of the joint element. In this study the lateral load transfer behavior of the joint in deck structure system is experimentally evaluated. Several decks connected by the joint are prefabricated and loaded centrically and eccentrically. In the case of centrically loaded specimens, the analysis results show that for the same loading step the rotation angle of the joint with 4 high-tension bolts is larger than the case of the joint with 9 high-tension bolts. Consequently, flexural stiffness of deck and lateral load transfer decrease in the case of specimen with 4 high-tension bolts. But, in the case of eccentrically loaded specimens, it is found that there are no significant differences in the load transfer behavior. The further analysis results about the structural behavior of the joint show that lateral load transfer can be restricted by the load bearing capacity of the joint as well as punching shear strength of the slab. Furthermore, considering that high-tension bolts in the joint didn't reach to the yielding condition until the punching shear failure, increase in the number of high-tension bolts from 4 to 9 has a greater effect on the flexural stiffness of the joint and deck system than the strength of them.

CFD ANALYSIS OF TURBULENT JET BEHAVIOR INDUCED BY A STEAM JET DISCHARGED THROUGH A VERTICAL UPWARD SINGLE HOLE IN A SUBCOOLED WATER POOL

  • Kang, Hyung-Seok;Song, Chul-Hwa
    • Nuclear Engineering and Technology
    • /
    • v.42 no.4
    • /
    • pp.382-393
    • /
    • 2010
  • Thermal mixing by steam jets in a pool is dominantly influenced by a turbulent water jet generated by the condensing steam jets, and the proper prediction of this turbulent jet behavior is critical for the pool mixing analysis. A turbulent jet flow induced by a steam jet discharged through a vertical upward single hole into a subcooled water pool was subjected to computational fluid dynamics (CFD) analysis. Based on the small-scale test data derived under a horizontal steam discharging condition, this analysis was performed to validate a CFD method of analysis previously developed for condensing jet-induced pool mixing phenomena. In previous validation work, the CFD results and the test data for a limited range of radial and axial directions were compared in terms of profiles of the turbulent jet velocity and temperature. Furthermore, the behavior of the turbulent jet induced by the steam jet through a horizontal single hole in a subcooled water pool failed to show the exact axisymmetric flow pattern with regards to an overall pool mixing, whereas the CFD analysis was done with an axisymmetric grid model. Therefore, another new small-scale test was conducted under a vertical upward steam discharging condition. The purpose of this test was to generate the velocity and temperature profiles of the turbulent jet by expanding the measurement ranges from the jet center to a location at about 5% of $U_m$ and 10 cm to 30 cm from the exit of the discharge nozzle. The results of the new CFD analysis show that the recommended CFD model of the high turbulent intensity of 40% for the turbulent jet and the fine mesh grid model can accurately predict the test results within an error rate of about 10%. In this work, the turbulent jet model, which is used to simply predict the temperature and velocity profiles along the axial and radial directions by means of the empirical correlations and Tollmien's theory was improved on the basis of the new test data. The results validate the CFD model of analysis. Furthermore, the turbulent jet model developed in this study can be used to analyze pool thermal mixing when an ellipsoidal steam jet is discharged under a high steam mass flux in a subcooled water pool.