• Title/Summary/Keyword: In-flight

Search Result 4,692, Processing Time 0.035 seconds

Utilization of [6]-gingerol as an origin discriminant marker influencing melanin inhibitory activity relative to its content in Pinellia ternata (반하(Pinellia ternata)에서의 [6]-gingerol 함량과 멜라닌 저해 활성에 영향을 미치는 원산지 판별 마커로의 활용)

  • An, Ju Hyeon;Won, Hyo Jun;Seo, Soo-Kyung;Kim, Doo-Young;Ku, Chang-Sub;Oh, Sei-Ryang;Ryu, Hyung Won
    • Journal of Applied Biological Chemistry
    • /
    • v.59 no.4
    • /
    • pp.323-330
    • /
    • 2016
  • Pinellia ternata Breitenbach, the natural medicinal plant of the Araceae family, is a perennial plant originated from the East Asia, but also widely distributed in Europe and North America. Its tuber is used as traditional medicine for treatment of various diseases such as vomiting, inflammation, and traumatic injury. Pharmacological studies revealed that P. ternata possesses anticonvulsant, anti-tumor, insecticidal, and cytotoxic activities. Despite being well-known as the useful medicinal plant, there is no reliable, standardized method for origin discrimination. Ultra performance liquid chromatography-photodiode array detector and quadrupole time of flight-mass spectrometry based metabolite-profiling was applied to explore significant metabolite for origin discrimination between Korean and Chinese P. ternata. One compound was isolated from Korean P. ternata using repeated ODS column chromatography by bioactivity guided fractionation, and determined as [6]-gingerol according to the results of spectroscopic data including nuclear magnetic resonance and MS. This compound was selected as cosmeceutical biomarker by fingerprints, and it was associated to melanin inhibitory effect determining its origin authenticity. Furthermore, the calibration curve of biomarker was prepared using validated method for the comparison of content between Korean and Chinese P. ternata. This is the report to address the selection and successful validation of the discriminant metabolite for confirmation of Korean P. ternata.

An Analytical Study for the Stair Joints Constructed with Prefabricated Form System (선시공 조립식 거푸집 공법을 이용한 계단 접합부의 접합방식에 따른 해석적 연구)

  • Lee, Eun-Jin;Jin, Byung-Chang;Chang, Kug-Kwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.301-304
    • /
    • 2008
  • The stair joints constructed with prefabricated system are general method doing structure design at hinge. If you regarded joints to come in contact with a flight of stairs and a slope of stairs as hinge, the moment performance of joints is not in the least moment, so as the bending moment of the stair case is increased, the reinforcement increase. Also the use is decreased because increasing the joint damage of the vibration & fatigue load. No less the reason constructed with pin the stair joints because the construction efficiency of field work is useable. Recently, they are considering the construction efficiency, while the semi-rigid detail for bending performance of joints is proposed, but for now they don't reflect the detail. Therefore, we proposed that reflecting the method at design semi-rigid joints. We compared the moment performance with the stair joints designed at the rigid joints, semi-rigid joints and pin joints. The nonlinear behavior of staircase core statically indeterminate structure. The result of research is that a bending stiffness modulus bring to reflect the semi-rigid performance, the performance of the semi-rigid joint is better than pin joints, and that is judged the system better seismic and vibration performance because have excellent ductility more than rigid joint.

  • PDF

Chemical transformation and target preparation of saponins in stems and leaves of Panax notoginseng

  • Wang, Ru-Feng;Li, Juan;Hu, Hai-Jun;Li, Jia;Yang, Ying-Bo;Yang, Li;Wang, Zheng-Tao
    • Journal of Ginseng Research
    • /
    • v.42 no.3
    • /
    • pp.270-276
    • /
    • 2018
  • Background: Notoginsenoside Ft1 is a promising potential candidate for cardiovascular and cancer disease therapy owing to its positive pharmacological activities. However, the yield of Ft1 is ultralow utilizing reported methods. Herein, an acid hydrolyzing strategy was implemented in the acquirement of rare notoginsenoside Ft1. Methods: Chemical profiles were identified by ultraperformance liquid chromatography coupled with quadruple-time-of-flight and electrospray ionization mass spectrometry (UPLC-Q/TOF-ESI-MS). The acid hydrolyzing dynamic changes of chemical compositions and the possible transformation pathways of saponins were monitored by ultrahigh-performance LC coupled with tandem MS (UHPLC-MS/ MS). Results and conclusion: Notoginsenoside Ft1 was epimerized from notoginsenoside ST4, which was generated through cleaving the carbohydrate side chains at C-20 of notoginsenosides Fa and Fc, and vinaginsenoside R7, and further converted to other compounds via hydroxylation at C-25 or hydrolysis of the carbohydrate side chains at C-3 under the acid conditions. High temperature contributed to the hydroxylation reaction at C-25 and 25% acetic acid concentration was conducive to the preparation of notoginsenoside Ft1. C-20 epimers of notoginsenoside Ft1 and ST4 were successfully separated utilizing solvent method of acetic acid solution. The theoretical preparation yield rate of notoginsenoside Ft1 was about 1.8%, which would be beneficial to further study on its bioactivities and clinical application.

Derivation and Evaluation of Surface Reflectance from UAV Multispectral Image for Monitoring Forest Vegetation (산림 식생 모니터링을 위한 무인기 다중분광영상의 반사율 산출 및 평가)

  • Lee, Hwa-Seon;Seo, Won-Woo;Woo, Choongshik;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1149-1160
    • /
    • 2019
  • In this study, two radiometric correction methods deriving reflectance from UAV multispectral image for monitoring forest vegetation were applied and evaluated. Multispectral images were obtained from a small multispectral camera having 5 spectral bands. Reflectance were derived by applying the two methods: (1) the direct method using downwelling irradiance measurement and (2) the empirical line correction method by linking a set of field reflectance measured simultaneous with the image capture. Field reflectance were obtained using a spectroradiometer during the flight and used for building the linear equation for the empirical method and for the validation of image reflectance derived. Although both methods provided the high correlations between field reflectance and image-derived reflectance, their distributions were somewhat different. While the direct method provided rather stable and consistent distribution of reflectance all over the entire image area, the empirical method showed very unstable and inconsistent reflectance distribution. The direct method would be more appropriate for relatively wide area that requires more time to acquire image and may vary in downwelling irradiance and atmospheric conditions.

Development of an Image Processing System for the Large Size High Resolution Satellite Images (대용량 고해상 위성영상처리 시스템 개발)

  • 김경옥;양영규;안충현
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.4
    • /
    • pp.376-391
    • /
    • 1998
  • Images from satellites will have 1 to 3 meter ground resolution and will be very useful for analyzing current status of earth surface. An image processing system named GeoWatch with more intelligent image processing algorithms has been designed and implemented to support the detailed analysis of the land surface using high-resolution satellite imagery. The GeoWatch is a valuable tool for satellite image processing such as digitizing, geometric correction using ground control points, interactive enhancement, various transforms, arithmetic operations, calculating vegetation indices. It can be used for investigating various facts such as the change detection, land cover classification, capacity estimation of the industrial complex, urban information extraction, etc. using more intelligent analysis method with a variety of visual techniques. The strong points of this system are flexible algorithm-save-method for efficient handling of large size images (e.g. full scenes), automatic menu generation and powerful visual programming environment. Most of the existing image processing systems use general graphic user interfaces. In this paper we adopted visual program language for remotely sensed image processing for its powerful programmability and ease of use. This system is an integrated raster/vector analysis system and equipped with many useful functions such as vector overlay, flight simulation, 3D display, and object modeling techniques, etc. In addition to the modules for image and digital signal processing, the system provides many other utilities such as a toolbox and an interactive image editor. This paper also presents several cases of image analysis methods with AI (Artificial Intelligent) technique and design concept for visual programming environment.

Study on the neutron imaging detector with high spatial resolution at China spallation neutron source

  • Jiang, Xingfen;Xiu, Qinglei;Zhou, Jianrong;Yang, Jianqing;Tan, Jinhao;Yang, Wenqin;Zhang, Lianjun;Xia, Yuanguang;Zhou, Xiaojuan;Zhou, Jianjin;Zhu, Lin;Teng, Haiyun;Yang, Gui-an;Song, Yushou;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.6
    • /
    • pp.1942-1946
    • /
    • 2021
  • Gadolinium oxysulfide (GOS) is regarded as a novel scintillator for the realization of ultra-high spatial resolution in neutron imaging. Monte Carlo simulations of GOS scintillator show that the capability of its spatial resolution is towards the micron level. Through the time-of-flight method, the light output of a GOS scintillator was measured to be 217 photons per captured neutron, ~100 times lower than that of a ZnS/LiF:Ag scintillator. A detector prototype has been developed to evaluate the imaging solution with the GOS scintillator by neutron beam tests. The measured spatial resolution is ~36 ㎛ (28 line pairs/mm) at the modulation transfer function (MTF) of 10%, mainly limited by the low experimental collimation ratio of the beamline. The weak light output of the GOS scintillator requires an enormous increase in the neutron flux to reduce the exposure time for practical applications.

An Aerodynamic Modeling and Simulation of a Folding Tandem Wing Type Aerial Launching UAV (접이식 직렬날개형 공중투하 무인비행체의 공력 모델링 및 시뮬레이션)

  • Lee, Seungjin;Lee, Jungmin;Ahn, Jeongwoo;Park, Jinyong
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.4
    • /
    • pp.19-26
    • /
    • 2018
  • The aerial launching UAV(Unmanned Aerial Vehicle) mainly uses a set of folding tandem wings to maximize flight performance and minimize the space required for mounting in a mothership. This folding tandem wing has a unique aerodynamic problem that is different from the general type of fixed wing aircraft, such as the rear wing interference problem caused by the wing of the front wing wake and vortex, and the imbalance of the pivot moment applied to the front and rear wings when the wing is deployed. In this paper, we have modeled and simulated various cases through computational fluid dynamics based on the finite volume method and analyzed various aerodynamic phenomena of the tandem wing type aircraft. We find that the front wing shall be installed higher than the rear for minimizing the wake influence and the rear wing can be deployed faster than the front because of the pivot moment due to aerodynamic forces. Also, considering the pivot moment due to aerodynamic force, the rear wing can be deployed much faster than the front wing. Therefore, it is necessary to consider it when developing the wing deploy mechanism.

Evaluation of Measurement Accuracy for Unmanned Aerial Vehicle-based Land Surface Temperature Depending on Climate and Crop Conditions (기상 조건과 작물 생육상태에 따른 무인기 기반 지표면온도의 관측 정확도 평가)

  • Ryu, Jae-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.211-220
    • /
    • 2021
  • Land Surface Temperature (LST) is one of the useful parameters to diagnose the growth and development of crop and to detect crop stress. Unmanned Aerial Vehicle (UAV)-based LST (LSTUAV) can be estimated in the regional spatial scale due to miniaturization of thermal infrared camera and development of UAV. Given that meteorological variable, type of instrument, and surface condition can affect the LSTUAV, the evaluation for accuracy of LSTUAV is required. The purpose of this study is to evaluate the accuracy of LSTUAV using LST measured at ground (LSTGround) under various meteorological conditions and growth phases of garlic crop. To evaluate the accuracy of LSTUAV, Relative humidity (RH), absolute humidity (AH), gust, and vegetation index were considered. Root mean square error (RMSE) after minimizing the bias between LSTUAV and LSTGround was 2.565℃ under above 60% of RH, and it was higher than that of 1.82℃ under the below 60% of RH. Therefore, LSTUAV measurement should be conducted under the below 60% of RH. The error depending on the gust and surface conditions was not statistically significant (p-value < 0.05). LSTUAV had reliable accuracy under the wind speed conditions that allow flight and reflected the crop condition. These results help to comprehend the accuracy of LSTUAV and to utilize it in the agriculture field.

Research to Predict the Thermal Characteristics of Electro Hydrostatic Actuator for Aircraft (항공기용 전기-정유압식 작동기(Dual Redundant Asymmetric Tandem EHA)의 열특성 예측을 위한 연구)

  • Kim, Sang Seok;Park, Hyung Jun;Kim, Daeyeon;Kim, Dae Hyun;Kim, Sang Beom;Lee, Junwon;Choi, Jong Yoon
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.84-92
    • /
    • 2022
  • The electro-hydrostatic actuator (EHA) recently has been used in flight control fields for aircraft because of its benefits of minimizing oil leakage and weight, improving safety, and etc. while independently operating the hydraulic power source and eliminating complex hydraulic piping. The aircraft of which EHA is installed inside, has the thermal management issue of EHA, because of its limited cooling source as compared with the aircraft which installs the traditional central hydraulic system. So, the thermal analysis model which predicts the thermal characteristics of EHA, is required to resolve this thermal management issue. In this study, an oil circulation circuit inside the hydraulic power module comprised of hydraulic pump and electrical motor for EHA was applied. This is for the purpose of developing the internal rotary group of hydraulic power module, which operates under the conditions of high rotation speed and hydraulic pressure. After formulating an appropriate thermal analysis model, the thermal analysis results with oil cooled or no oil cooled hydraulic control module were compared and reviewed, for the purpose of predicting the thermal characteristics of EHA.

Establishment of a Standard Procedure for Safety Inspections of Bridges Using Drones (드론 활용 교량 안전점검을 위한 표준절차 정립)

  • Lee, Suk Bae;Lee, Kihong;Choi, Hyun Min;Lim, Chi Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.281-290
    • /
    • 2022
  • In Korea, the number of national facilities for which a safety inspection is mandatory is increasing, and a safer safety inspection method is needed. This study aimed to increase the efficiency of the bridge safety inspection by enabling rapid exterior inspection while securing the safety of inspectors by using drones to perform the safety inspections of bridges, which had mainly relied on visual inspections. For the research, the Youngjong Grand Bridge in Incheon was selected as a test bed and was divided into four parts: the warren truss, suspension bridge main cable, main tower, and pier. It was possible to establish a five-step standard procedure for drone safety inspections. The step-by-step contents of the standard procedure obtained as a result of this research are: Step 1, facility information collection and analysis, Step 2, analysis of vulnerable parts and drone flight planning, Step 3, drone photography and data processing, Step 4, condition evaluation by external inspection, Step 5, building of external inspection diagram and database. Therefore, if the safety inspections of civil engineering facilities including bridges are performed according to this standard procedure, it is expected that these inspection can be carried out more systematically and efficiently.