• Title/Summary/Keyword: In-Vessel

Search Result 5,822, Processing Time 0.031 seconds

Two Dimensional Analysis for the External Vessel Cooling Experiment

  • Yoon, Ho-Jun;Kune Y. Suh
    • Nuclear Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.410-423
    • /
    • 2000
  • A two-dimensional numerical model is developed and applied to the LAVA-EXV tests performed at the Korea Atomic Energy Research Institute (KAERI) to investigate the external cooling effect on the thermal margin to failure of a reactor pressure vessel (RPV) during a severe accident. The computational program was written to predict the temperature profile of a two-dimensional spherical vessel segment accounting for the conjugate heat transfer mechanisms of conduction through the debris and the vessel, natural convection within the molten debris pool, and the possible ablation of the vessel wall in contact with the high temperature melt. Results of the sensitivity analysis and comparison with the LAVA-EXV test data indicated that the developed computational tool carries a high potential for simulating the thermal behavior of the RPV during a core melt relocation accident. It is concluded that the main factors affecting the RPV failure are the natural convection within the debris pool and the ablation of the metal vessel, The simplistic natural convection model adopted in the computational program partly made up for the absence of the mechanistic momentum consideration in this study. Uncertainties in the prediction will be reduced when the natural convection and ablation phenomena are more rigorously dealt with in the code, and if more accurate initial and time-dependent conditions are supplied from the test in terms of material composition and its associated thermophysical properties.

  • PDF

THERMAL AND STRUCTURAL ANALYSIS OF CALANDRIA VESSEL OF A PHWR DURING A SEVERE ACCIDENT

  • Kulkarni, P.P.;Prasad, S.V.;Nayak, A.K.;Vijayan, P.K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.4
    • /
    • pp.469-476
    • /
    • 2013
  • In a postulated severe core damage accident in a PHWR, multiple failures of core cooling systems may lead to the collapse of pressure tubes and calandria tubes, which may ultimately relocate inside the calandria vessel forming a terminal debris bed. The debris bed, which may reach high temperatures due to the decay heat, is cooled by the moderator in the calandria. With time, the moderator is evaporated and after some time, a hot dry debris bed is formed. The debris bed transfers heat to the calandria vault water which acts as the ultimate heat sink. However, the questions remain: how long would the vault water be an ultimate heat sink, and what would be the failure mode of the calandria vessel if the heat sink capability of the reactor vault water is lost? In the present study, a numerical analysis is performed to evaluate the thermal loads and the stresses in the calandria vessel following the above accident scenario. The heat transfer from the molten corium pool to the surrounding is assumed to be by a combination of radiation, conduction, and convection from the calandria vessel wall to the vault water. From the temperature distribution in the vessel wall, the transient thermal loads have been evaluated. The strain rate and the vessel failure have been evaluated for the above scenario.

Study of the improvement program for fire safety of FRP vessel (FRP선박의 화재안전성 개선방안 연구)

  • Gang, Byeong-Jae;Lee, Hui-Jun
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.22
    • /
    • pp.4-18
    • /
    • 2007
  • The purpose of this study is to improve the fire safety characteristic of the FRP vessel. In this study, we analyzed the fire accidents of FRP vessel and investigated the ruels of domestic and other country for the structural fire protection standard of FRP vessel. We suggested the fire-retardent resin quality standard, and the improvement program for fire safety of FRP vessel.

  • PDF

A Simplified Bridge-vessel Collision Model Considering with the Rotational Motions of the Vessel (선체의 회전을 고려한 선박과 교량의 간이충돌모델)

  • Lee, GyeHee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.2A
    • /
    • pp.43-49
    • /
    • 2011
  • In this study, to analyze the collision behaviors of the bridge super-structure and the vessel which the collision point is located far from its rotation center such as bridge of a vessel and equipments on a barge, the simplified collision model was proposed. The model was configured to denote the mass, stiffness and the nonlinear behaviors of the bridge and the vessel. The nonlinear equation of motions of the proposed model were numerically solved by 4th order Runge-Kutta method. The parametric studies were performed for various collision conditions by the standardized Korean barge vessel in term of barge width, and its effects to the maximum collision load of bridge were analyzed.

Thermal stress analysis of the KSTAR vacuum vessel during bake-outs (KSTAR 진공용기의 베이킹시 열응력해석)

  • 인상렬;윤병주;조승연
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.4
    • /
    • pp.285-292
    • /
    • 1998
  • The vacuum vessel of the KSTAR tokamak has a so large poloidal cross- section that workers can enter into the inside the vessel. To produce a clean plasma with low impurity concentrations it is planned that the whole vessel including plasma facing components will be baked out at $350^{\circ}C$ and the base pressure of the vessel will be kept in the range of ultra high vacuum. Large thermal stresses are expected during bake-outs to a three-dimensionally complex structure of the vessel, consequent ununiformity of the temperature distribution and support systems to resist forces acting on the vessel. In this report variations of the thermal stress according to temperature gradients on the vessel and constraint conditions of supporting structures are studied and some possible counterplans are discussed.

  • PDF

Power Consumption for Double-Stage Paddle Impeller in Cylindrical and Spherical Agitated Vessels (원통 및 구형교반조에서의 2단 Paddle 임펠러에 대한 소요동력)

  • Lee, Young-Sei;Choi, Hyun-Kuk;Shida, Hirotaka
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.4
    • /
    • pp.247-253
    • /
    • 2006
  • Power consumption for double-stage paddle impeller in spherical and cylindrical agitated vessel was measured over a wide range of Reynolds number from laminar to turbulent flow regions. The power correlation was obtained which was applied to both spherical and cylindrical vessel, when the apparent diameter of the spherical vessel was equal to the diameter of the cylindrical vessel which had a height equal to its diameter and had the same volume as the spherical vessel. The power consumption for the double-stage impeller was dependent upon the distance of among the impeller in the agitated vessels, as follows: $$f/2={\frac{C_L}{Re_G}}+{\frac{Ct}{2}}({\frac{C_tr}{Re_g}}+Re_g)^{-m}$$

  • PDF

A Verification of the Accuracy of the Deformable Model in 3 Dimensional Vessel Surface Reconstruction (혈관표면의 3차원 재구성을 위한 Deformable model의 정확성 검증에 관한 연구)

  • Kim, H.C.;Oh, J.S.;Kim, H.R.;Cho, S.B.;Sun, K.;Kim, M.G.
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.3-5
    • /
    • 2005
  • Vessel boundary detection and modeling is a difficult but a necessary task in analyzing the mechanics of inflammation and the structure of the microvasculature. In this paper we present a method of analyzing the structure by means of an active contour model(using GVF Snake) for vessel boundary detection and 3D reconstruction. For this purpose we used a virtual vessel model and produced a phantom model. From these phantom images we obtained the contours of the vessel by GVF Snake and then reconstructed a 3D structure by using the coordinates of snakes.

  • PDF

The Assessment of Safe Navigation Regarding Hydrodynamic forces between Ships in Restricted Waterways

  • Lee, Chun-Ki;Lee, Sam-Goo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.2002-2009
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vessels in restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transverse distance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the bigger one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

The assessment of Safe Navigation Regarding Hydrodynamic forces between ships in Restricted Waterways

  • Lee, Chun-Ki;Yoon, Jeom-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.1
    • /
    • pp.89-93
    • /
    • 2006
  • This paper is primarily focused on the safe navigation between overtaking and overtaken vessels in restricted waterways under the external forces, such as wind and current. The maneuvering simulation between two ships was conducted to find an appropriate safe speed and distance, which is required to avoid collision. From the viewpoint of marine safety, a greater transverse distance between two ships is more needed for the smaller vessel. Regardless of external forces, the smaller vessel will get a greater effect of hydrodynamic forces than the bigger one. In the case of close navigation between ships under the forces of wind and current, the vessel moving at a lower speed is potentially hazardous because the rudder force of the lower speed vessel is not sufficient for steady-state course-keeping, compared to that of the higher speed vessel.

  • PDF

Stress analysis of the KSTAR vacuum vessel under thermal and electromagnetic loads (KSTAR 진공용기 열 및 전자기력 하중에 의한 응력해석)

  • Cho, S.;Kim, J.B.;Her, N.I.;Im, K.H.;Sa, J.W.;Yu, I.K.;Kim, Y.C.;Do, C.J.;Kwon, M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.325-330
    • /
    • 2001
  • One of the principal components of the KSTAR (Korea Superconducting Tokamak Advanced Research) tokamak structure is the vacuum vessel, which acts as the high vacuum boundary for the plasma and also provides the structural support for internal components. Hyundai Heavy Industries Inc. has performed the engineering design of the vacuum vessel. Here the overall configuration of the KSTAR vacuum vessel was briefly described and then the design methodology and the analysis results were presented. The vacuum vessel consists of double walls, several ports, leaf spring style supports. Double walls are separated by reinforcing ribs and filled with baking/shielding water. The overall external dimensions of the main body are 3.39 m high, 1.11 m inner radius, 2.99 m outer radius, and made of SA240-316LN. The vacuum vessel was designed to be capable of achieving the base pressure of $1\times10^{-8}$ Torr, and also to be structurally capable of sustaining the vacuum pressure, the electromagnetic and thermal loads during plasma disruption and bakeout, respectively. The vacuum vessel will be baked out maximum $150^{\circ}C$ by hot pressurized water through the channels formed between double walls and the reinforcing ribs. A 3-D temperature distribution and the resulting thermal loads in the vessel were calculated during bakeout. It was found that the vacuum vessel and its supports were structurally rigid based on the thermal stress analysis. The maximum electromagnetic loads on the vacuum vessel induced by eddy and halo currents resulting from the engineering plasma radial and vertical disruption scenarios have been estimated. The stress analyses have been performed based on these electromagnetic loads and the resulting stresses at he critical locations of the vacuum vessel were within the allowable stresses.

  • PDF