• Title/Summary/Keyword: In-Sn alloy target

Search Result 10, Processing Time 0.02 seconds

Electrical and Optical Properties of ITO Films Sputtered by RF -bias Voltage and In-Sn Alloy Target

  • Kim, Hyun-Hoo;Shin, Sung-Ho
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.4
    • /
    • pp.153-157
    • /
    • 2004
  • ITO thin films were deposited on PET and soda-lime glass substrates by a dc reactive magnetron sputtering of In-Sn alloy metal target without substrate heater and post-deposition thermal treatment. The dependency of rf-bias voltage and substrate power during deposition processing was investigated to control the electrical and optical properties of ITO films. The range of rf bias voltage is from 0 to -80 V and the substrate power is applied from 10 to 50 W. The minimum resistivity of ITO film is 5.4${\times}$10$^{-4}$ $\Omega$cm at 50 W power and rf-bias voltage of -20 V. The best transmittance of ITO films at 550 nm wavelength is 91 % in the substrate power of 30 W and rf-bias voltage of -80 V.

Electrical Properties of ITO Thin Film Deposited by Reactive DC Magnetron Sputtering using Various Sn Concentration Target (반응성 DC 마그네트론 스퍼터링법으로 증착한 ITO 박막의 전기적 특성 평가)

  • Kim, Min-Je;Jung, Jae-Heon;Song, Pung-Keun
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.6
    • /
    • pp.311-315
    • /
    • 2014
  • Indium tin oxide (ITO) thin films (30 nm) were deposited on PET substrate by reactive DC magnetron sputtering using In/Sn(2, 5 wt.%) metal alloy target without intentionally substrate heating during the deposition under different DC powers of 70 ~ 110 W. The electrical properties were estimated by Hall-effect measurements system. The resistivity of ITO thin film deposited using In/Sn (5 wt.%) metal alloy target at low DC power increased with increasing annealing time. However, they increased with increasing annealing time at high DC power. In the case of ITO (Sn 2 wt%), we can't find clear change in resistivity with increasing annealing time. However, carrier density and mobility showed difference behavior due to change of oxygen vacancy.

Figure of Merit for Deposition Conditions in ITO Films

  • Kim, H.H.;Cho, M.J.;Park, W.J.;Lee, J.G.;Lim, K.J.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.2
    • /
    • pp.6-9
    • /
    • 2002
  • Indium tin oxide (ITO) films were deposited on unheated PET substrates by DC reactive magnetron sputtering of In-Sn (90-10 wt%) metallic alloy target. Electrical and optical properties of as-deposited films were systematically studied by control of the deposition parameters such as working pressure, DC power, and oxygen partial pressure. The figures of merit are important factors that summarize briefly the relationship between electrical and optical properties of transparent conducting films. The formulae of T/R$\_$sh/ and T$\^$10// R$\_$sh/ are expressed as a function of transmittance and sheet resistance. The best values of those figures of merit were approximately 38.6 and 8.95 ($\times$10$\^$-3/Ω$\^$-1/), respectively.

Control of Deposition Parameters in ITO Films: Figure of Merit

  • Kim, H.H.;Park, C.H.;Cho, M.J.;Lim, K.J.;Shin, J.H.;Park, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.398-401
    • /
    • 2001
  • Indium tin oxide films were deposited on unheated PET substrates by DC reactive magnetron sputtering of In-Sn (90-10 wt%) metallic alloy target. Electrical and optical properties of as-deposited films were systematically studied by control of the deposition parameters such as working pressure, DC power, and oxygen partial pressure. The figures of merit are important factors that summarize briefly the relationship between electrical and optical properties of transparent conducting films. The formulae of $T/R_{sh}$ and $T^{10}/R_{sh}$ are expressed as a function of transmittance and sheet resistance. The best values of those figures of merit were approximately 38.6 and $8.95({\times}10^{-3}\Omega^{-1})$ respectively.

  • PDF

Control of Deposition Parameters in ITO Films: Figure of Merit

  • Kim, H.H.;Park, C.H.;M.J. Cho;K.J. Lim;J.H. Shin;Park, K.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.398-401
    • /
    • 2001
  • Indium tin oxide films were deposited on unheated PET substrates by DC reactive magnetron sputtering of In-Sn (90-10 wt%) metallic alloy target. Electrical and optical properties of as-deposited films were systematically studied by control of the deposition parameters such as working pressure, DC power, and oxygen partial pressure. The figures of merit are important factors that summarize briefly the relationship between electrical and optical properties of transparent conducting films. The formulae of T/R$\sub$sh/ and T$\^$10//R$\sub$sh/ are expressed as a function of transmittance and sheet resistance. The best values of those figures of merit were approximately 38.6 and 8.95 (x10$\^$-3/Ω$\^$-1/), respectively.

  • PDF

Antiferromagnetically Exchange-coupled Two Phase Magnets: Co/Co2TiSn

  • Kim, Tae-Wan;Oh, Jung-Keun
    • Journal of Magnetics
    • /
    • v.13 no.2
    • /
    • pp.43-52
    • /
    • 2008
  • The objective of this paper is to review the magnetic and magneto-transport properties of Co/$Co_2TiSn$ consisting of two metallic magnetic phases that are antiferromagnetically exchange-coupled at the phase boundary. The bulk Co/$Co_2TiSn$ system, which has a $Co_2$TiSn Heusler alloy precipitates in the hexagonal Co matrix, showed an unusual coercivity change with a concurrent change in temperature, and was modeled on the basis of a wall formation caused by exchange coupling at the phase boundary. For measurements of magneto-transport properties, Co/$Co_2TiSn$ thin films that had two-magnet phases were deposited using a magnetron sputtering system with a composite target. The magnetization process in the films is also explained on the basis of the model of wall formation at the phase boundary. Annealed Co/$Co_2TiSn$ films showed a 0.12% GMR effect, indicating the scattering of polarized conduction electrons due to the antiparallel exchange coupling at the phase boundary. The scattering process of conduction electrons at the phase boundary was modeled with relation to the magnetization process.

Relationship between Film Density and Electrical Properties on D.C. Magnetron Reactive Sputtered Sn-doped ${In_2}{O_3}$Films (D.C. 마그네트론 반응성 스퍼터링법에 의한 Sn-doped ${In_2}{O_3}$ 박막의 밀도와 전기적 특성과의 관계)

  • 이정일;최시경
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.7
    • /
    • pp.686-692
    • /
    • 2000
  • Tin-doped In2O3 (ITO) films were fabricated using a d.c. magnetron reactive sputteirng of a In-10 wt% Sn alloy target in an Ar and O2 gas mixture. To understand the behavior of the carrier mobility in ITO films with O2 partial pressure, the resistivity, carrier concentration and mobility, film density, and intrinsic stress in the films were measured with O2 partial pressure. It was found experimentally that the carrier mobility increased rapidly as the film density increased. In the ITO film with the density close to theoretical one, the mean free path was the same as the columnar diameter. This indicated that the mobility in ITO films was strongly influenced by the crystall size. However, in the case where the film density was smaller than a theoretical density, the mean free paths were also smaller the columnar diameter. It was analyzed that the electron scattering at pores and holes within the crystalline was the major obstacle for electron conduction in ITO films. The measurement of intrinsic stress in ITO films also made it clear that the density of ITO films was controlled by the bombardment of oxygen neutrals on the growing film.

  • PDF

The Effect of Dielectric Firing Process in PDP on the Properties of ITO Prepared by Reactive RF Sputtering (반응성 스퍼트링에 의한 ITO의 형성과 유전체 소성공정중의 특성변화에 관한 연구)

  • 남상옥;지성원;손제봉;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.510-514
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD(Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn 10wt%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature 15$0^{\circ}C$ and 8% $O_2$. Partial pressure showed about 3.6 Ω/$\square$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF

The Property Change of ITO Prepared by Reactive R.F. Sputtering in POP manufacturing Process (반응성 스퍼트링으로 형성된 ITO의 유전채 소성에 따른 특성변화)

  • Nam, Sang-Ok;Chi, Sung-Won;Sohn, Je-Bong;Huh, Keun-Do;Cho, Jung-Soo;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 1997.07d
    • /
    • pp.1411-1413
    • /
    • 1997
  • The thin film that is electrically conductive and optically transparent is called conductive transparent thin film. ITO(Indium-Tin Oxide) which is a kind of conductive transparent thin film has been widely used in solar cell, transparent electrical heater, selective optical filter, FDP(Flat Display Panel) such as LCD (Liquid Crystal Display), PDP(Plasma Display Panel) and so on. Especially in PDP, ITO films is used as a transparent electrode in order to maintain discharge and decrease consumption power through the improvement of cell structure. In this study, we prepared ITO by reactive r.f. sputtering with indium-tin(Sn wt 10%) alloy target instead of indium-tin oxide target. The ITO films deposited at low temperature $150^{\circ}C$ and 8% $O_2$ partial pressure showed about $3.6{\Omega}/{\square}$. At the end of firing, the resistance of ITO was decreased, the optical transparence was improved above 90%.

  • PDF

Manufacturing and testing of flat-type divertor mockup with advanced materials

  • Nanyu Mou;Xiyang Zhang;Qianqian Lin;Xianke Yang;Le Han;Lei Cao;Damao Yao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2139-2146
    • /
    • 2023
  • During reactor operation, the divertor must withstand unprecedented simultaneous high heat fluxes and high-energy neutron irradiation. The extremely severe service environment of the divertor imposes a huge challenge to the bonding quality of divertor joints, i.e., the joints must withstand thermal, mechanical and neutron loads, as well as cyclic mode of operation. In this paper, potassium-doped tungsten (KW) is selected as the plasma facing material (PFM), oxygen-free copper (OFC) as the interlayer, oxide dispersion strengthened copper (ODS-Cu) alloy as the heat sink material, and reduced activation ferritic/martensitic (RAFM) steel as the structural material. In this study, a vacuum brazing technology is proposed and optimized to bond Cu and ODS-Cu alloy with the silver-free brazing material CuSnTi. The most appropriate brazing parameters are a brazing temperature of 940 ℃ and a holding time of 15 min. High-quality bonding interfaces have been successfully obtained by vacuum brazing technology, and the average shear strength of the as-obtained KW/Cu and ODS-Cu alloy joints is ~268 MPa. And a fabrication route for manufacturing the flat-type divertor target based on brazing technology is set. For evaluating the reliability of the fabrication technologies under the reactor relevant condition, the high heat flux test at 20 MW/m2 for the as-manufactured flat-type KW/Cu/ODS-Cu/RAFM mockup is carried out by using the Electron-beam Material testing Scenario (EMS-60) with water cooling. This paper reports the improved vacuum brazing technology to connect Cu to ODS-Cu alloy and summarizes the production route, high heat flux (HHF) test, the pre and post non-destructive examination, and the surface results of the flat-type KW/Cu/ODS-Cu/RAFM mockup after the HHF test. The test results demonstrate that the mockup manufactured according to the fabrication route still have structural and interfacial integrity under cyclic high heat loads.