• 제목/요약/키워드: In-Situ Soil

검색결과 758건 처리시간 0.022초

유류오염대수층에서 고온 공기분사공정법을 통한 TPH, VOCs, $CO_2$ 변화에 관한 특성인자 연구

  • 이준호;박갑성
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2005년도 총회 및 춘계학술발표회
    • /
    • pp.232-236
    • /
    • 2005
  • In-situ Air Sparging (IAS, AS) is a groundwater remediation technique, in which organic contaminants are volatilized into air as it rises from saturated to vadose soil zone. The purpose of this study was to investigate the effect of environmental conditions on the degradation of VOCs (Volatile Organic Compounds) and $CO_2$ in the unsaturated zone and TPH (Total Petroleum Hydrocarbons) in saturated zone of sandy loam. In the laboratory, diesel (10,000 mg TPH/kg)-contaminated saturated soil. After heating the soil for 36 days, the equilibrium temperature of soil reached to $34.9{\pm}2.7^{\circ}C$ and TPH concentration was reduced to 78.9% of the initial value, Volatilization loss of VOCs in TPH was about 2%, The reduction gradient of $CO_2$ concentration was 0.018/day in air space and 0.0007/day in unsaturated zone.

  • PDF

연직배수재(VDs)에 의한 오염지반정화 메커니즘 연구 (Mechanism of Soil Remediation in Contaminated Area Using Vertical Drains)

  • 이행우;장병욱;강병윤;김현태
    • 한국농공학회논문집
    • /
    • 제47권5호
    • /
    • pp.63-71
    • /
    • 2005
  • In-situ soil remediation mechanism through the vertical drains (VDs) is analyzed with numerical model as the error and complementary error function. Results from in-situ test and analysis indicate that the contaminant concentration ratio as initial one ( C/$C_0$) increases as the radius ratio ( r/R) increases from the injection well, and also increases as the depth ratio ( z/ H) increases from the top of contaminated area. The elapse time needed to attain $50\%$ and $90\%$ clean up level ($ t_{50},\;t_{90}$) increases as the radius ratio ( r/R) and the depth ratio ( z/ H) increase. As above results, the procedure of soil flushing in contaminated area using vertical drains makes progress from the top of injection well to the bottom of extraction well.

Isolation of an Indigenous Imidacloprid-Degrading Bacterium and Imidacloprid Bioremediation Under Simulated In Situ and Ex Situ Conditions

  • Hu, Guiping;Zhao, Yan;Liu, Bo;Song, Fengqing;You, Minsheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권11호
    • /
    • pp.1617-1626
    • /
    • 2013
  • The Bacterial community structure and its complexity of the enrichment culture during the isolation and screening of imidacloprid-degrading strain were studied using denaturating gradient gel electrophoresis analysis. The dominant bacteria in the original tea rhizosphere soil were uncultured bacteria, Rhizobium sp., Sinorhizobium, Ochrobactrum sp., Alcaligenes, Bacillus sp., Bacterium, Klebsiella sp., and Ensifer adhaerens. The bacterial community structure was altered extensively and its complexity reduced during the enrichment process, and four culturable bacteria, Ochrobactrum sp., Rhizobium sp., Geobacillus stearothermophilus, and Alcaligenes faecalis, remained in the final enrichment. Only one indigenous strain, BCL-1, with imidacloprid-degrading potential, was isolated from the sixth enrichment culture. This isolate was a gram-negative rod-shaped bacterium and identified as the genus Ochrobactrum based on its morphological, physiological, and biochemical properties and its 16S rRNA gene sequence. The degradation test showed that approximately 67.67% of the imidacloprid (50 mg/l) was degraded within 48 h by strain BCL-1. The optimum conditions for degradation were a pH of 8 and $30^{\circ}C$. The simulation of imidacloprid bioremediation by strain BCL-1 in soil demonstrated that the best performance in situ (tea soil) resulted in the degradation of 92.44% of the imidacloprid (100 mg/g) within 20 days, which was better than those observed in the ex situ simulations that were 64.66% (cabbage soil), 41.15% (potato soil), and 54.15% (tomato soil).

Biobarrier를 이용한 유기오염물질의 생물학적분해모의를 위한 수치모델개발

  • 왕수균
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 총회 및 춘계학술발표회
    • /
    • pp.137-140
    • /
    • 2003
  • This study presents a mathematical model for simulating the fate and transport of a reactive organic contaminant degraded through cometabolism in dual-porosity soils during the in situ bioaugmentations. To investigate the effect of dual-porosity on transport and biodegradation of organic hydrocarbons, a bimodal approach was incorporated into the model. Modified Monod kinetics and a microcolony concept [Molz et at., 1986〕 were employed to represent the effects of biodegrading microbes on the transport and biodegradation of an organic contaminant. The effect of permeability reduction due to biomass accumulation on the flow field were examined in the simulation of a hypothetical field-scale in situ bioaugmentation. Simulation results indicate that the presence of the immobile region can decrease the bioavailablity of biodegradable contaminants and that the placement of microbes and nutrients injection wells should be considered for an effective in situ bioaugmentation scheme.

  • PDF

붕괴사면보강을 위한 Soil Nailing의 적용성에 관한 연구 (Study of Soil Nailing Application as a Reinforcement Method for Slided Slope)

  • 이성철;김명학
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.127-134
    • /
    • 2000
  • Soil nailing is in-situ ground improvement technique of reinforcing soils using passive inclusions for the purpose of slope stability. Also soil nailing, in general, was used and studied as a reinforcement technique at cut slope, but this paper presents the results of study for soil nailing application as a reinforcement technique at the banking over slided slope. In-situ pull-out tests of nails, instrumented with strain gauges, were performed to investigate the maximum pull-out load and to calculate the unit side resistance in each different layer. And the apparent average unit side resistance of this study was compared with that of other sites installed at cut slope.

  • PDF

페놀 화학사고 발생으로 오염된 퇴적물에서 페놀의 거동 기작이 원위치 피복의 정화 효율에 미치는 영향 (Effect of the Fate Mechanisms of Phenol on the Remediation Efficiency of In-Situ Capping Applied to Sediment Contaminated by Phenol Chemical Spills)

  • 이아름;최용주
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권1호
    • /
    • pp.60-70
    • /
    • 2022
  • We evaluated the performance of in-situ capping to prevent the release of phenol, one of hazardous chemicals of concern for their impact on sediment. Sediment near the estuary of Hyeongsan River, Korea, and commercially-available sand were collected to evaluate their physical properties and phenol sorption characteristics. Biodegradation kinetics of phenol spiked into the sediment was evaluated under freshwater and estuarine salinity conditions. These experimental measurements were parameterized and used as input parameters for executing CapSim, a software predicting the performance of in-situ capping. The CapSim simulation demonstrated that capping with 50-cm sand reduced the phenol release by several orders of magnitude over 0.25- and 1-year duration for almost all simulation scenarios. The variables tested, i.e., cap thickness, pore-water movement, and biodegradation rate, showed high correlation to each other to influence the extent of phenol release from sediment to the water column. The findings and the framework employed to evaluate the performance of in-situ capping in this study can be adopted to determine whether in-situ capping is appropriate remedial approach at sediment sites impacted by hazardous chemicals due to accidental spills.

Application of In Situ Measurement for Site Remediation and Final Status Survey of Decommissioning KRR Site

  • Hong, Sang Bum;Nam, Jong Soo;Choi, Yong Suk;Seo, Bum Kyoung;Moon, Jei Kwon
    • Journal of Radiation Protection and Research
    • /
    • 제41권2호
    • /
    • pp.173-178
    • /
    • 2016
  • Background: In situ gamma spectrometry has been used to measure environmental radiation, assumptions are usually made about the depth distribution of the radionuclides of interest in the soil. The main limitation of in situ gamma spectrometry lies in determining the depth distribution of radionuclides. The objective of this study is to develop a method for subsurface characterization by in situ measurement. Materials and Methods: The peak to valley method based on the ratio of counting rate between the photoelectric peak and Compton region was applied to identify the depth distribution. The peak to valley method could be applied to establish the relation between the spectrally derived coefficients (Q) with relaxation mass per unit area (${\beta}$) for various depth distribution in soil. The in situ measurement results were verified by MCNP simulation and calculated correlation equation. In order to compare the depth distributions and contamination levels in decommissioning KRR site, in situ measurement and sampling results were compared. Results and Discussion: The in situ measurement results and MCNP simulation results show a good correlation for laboratory measurement. The simulation relationship between Q and source burial for the source layers have exponential relationship for a variety depth distributions. We applied the peak to valley method to contaminated decommissioning KRR site to determine a depth distribution and initial activity without sampling. The observed results has a good correlation, relative error between in situ measurement with sampling result is around 7% for depth distribution and 4% for initial activity. Conclusion: In this study, the vertical activity distribution and initial activity of $^{137}Cs$ could be identifying directly through in situ measurement. Therefore, the peak to valley method demonstrated good potential for assessment of the residual radioactivity for site remediation in decommissioning and contaminated site.

휴믹산 함유량에 따른 유동화 처리토의 공학적 특성 (Engineering Properties of Liquefied Stabilized Soil by Contents of Humic Acid)

  • 한상재;안동욱;박재만;김수삼
    • 대한토목학회논문집
    • /
    • 제29권5C호
    • /
    • pp.229-237
    • /
    • 2009
  • 전통적인 되메우기 방법은 모래 또는 현장발생토를 다짐하는 공법이 주로 사용되어 왔으나 이는 시간과 비용이 많이 든다. 특히 관의 하부 및 작은 틈새와 같은 부분은 전통적인 다짐 공법으로는 다지기가 난해하기 때문에, 이러한 문제점을 보완하기 위해 현장토를 재활용함으로써 모래 수급 문제를 해결하고 배합설계를 통해 유동성 및 강도를 임의로 조절할 수 있는 유동화 처리토 공법이 제안되었다. 본 연구에서는 현장토의 유기물 함유량에 따른 유동화 처리토의 배합 특성을 파악하고자, 휴믹산 함유량에 따른 재료분리특성, 유동성, 강도특성, 투수특성을 실내실험을 통해 측정하여, 비교 분석하였다. 그 결과, 휴믹산 함유량이 증가할수록 재료분리 특성과 유동성은 크게 나타났고, 강도는 유기물 함유량과 반비례하는 것으로 나타났다. 또한 유기물 함유량은 유동화 처리토의 투수특성에는 영향을 미치지 않는다는 것을 알 수 있었다.

생물학적 통풍법 공정관리를 위한 원위치 토양가스 관측정 개발 (Development of In-Situ Soil Gas Monitoring Well for Managing the Bioventing Performance)

  • 유찬
    • 한국농공학회논문집
    • /
    • 제49권1호
    • /
    • pp.67-76
    • /
    • 2007
  • Bioventing is commonly used for petroleum hydrocarbon (PHC) spills. This process provides better subsurface oxygenation, thus stimulating degradation by indigenous microorganisms. Therefore soil vapor monitoring points (VMPs) are extremely important in determining the potential effectiveness of bioventing and in long-term monitoring of bioventing progress. In this study in-situ soil gas monitoring well (GMW) was developed and presented the pilot test results which recover the contaminated site by bioventing method. The result of application was successful and it was expected that GMW developed could be applied to the evaluation procedure of bioventing effectiveness and long-term remediation potential.

토조내에 준비된 과압밀 점토에 대한 모형 원위치 시험 (Micro In-situ Tests on Overconsolidated Clay Prepared in Chambers)

  • 조남준
    • 한국지반공학회논문집
    • /
    • 제21권2호
    • /
    • pp.5-16
    • /
    • 2005
  • 모형지반을 이용한 각종 모형말뚝실험에서 자주 문제가 되는 것이 크기효과에 따른 실험의 정량적 분석에 대한 한계성이다. 이러한 문제를 보완하기 위하여 본 연구에서는 대형의 원통형 토조에 인공지반을 제작함으로써 지반 특성에 대한 크기효과를 최소화하도록 노력하였다. 또한 지반의 자연생성과정을 재현하고 빠를 시간내에 방밀을 완펄하기 위하여 케올리나이트와 실리카를 1:1로 혼합한 슬러리를 토조에서 압밀하여 인공지반을 생성하였다. 본 연구에서 마련한 모든 인공지딴의 특성을 자세히 파악하고 실제의 지반특성과 비교하기 위하여 베인시험기, 피조프로브, 콘관입시험기 등 여러가지의 원위치 소형조사장비를 제작 및 사용하였다. 본 연구에서 행한 원위치 시험 결과, 앞선 연구에서 밝힌 시험결과와 일치하는 결과를 얻었다. 또한 인공지반에서 행한 모형실험결과와 실제 상황과의 차이를 규명함으로써 모형실험결과에 근거하여 실물의 거동을 예측하는 방법을 찾고자 차였다.