• Title/Summary/Keyword: In-Plane Motion

Search Result 754, Processing Time 0.027 seconds

Facial Gaze Detection by Estimating Three Dimensional Positional Movements (얼굴의 3차원 위치 및 움직임 추정에 의한 시선 위치 추적)

  • Park, Gang-Ryeong;Kim, Jae-Hui
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.3
    • /
    • pp.23-35
    • /
    • 2002
  • Gaze detection is to locate the position on a monitor screen where a user is looking. In our work, we implement it with a computer vision system setting a single camera above a monitor and a user moves (rotates and/or translates) his face to gaze at a different position on the monitor. To detect the gaze position, we locate facial region and facial features(both eyes, nostrils and lip corners) automatically in 2D camera images. From the movement of feature points detected in starting images, we can compute the initial 3D positions of those features by camera calibration and parameter estimation algorithm. Then, when a user moves(rotates and/or translates) his face in order to gaze at one position on a monitor, the moved 3D positions of those features can be computed from 3D rotation and translation estimation and affine transform. Finally, the gaze position on a monitor is computed from the normal vector of the plane determined by those moved 3D positions of features. As experimental results, we can obtain the gaze position on a monitor(19inches) and the gaze position accuracy between the computed positions and the real ones is about 2.01 inches of RMS error.

Camera Tracking Method based on Model with Multiple Planes (다수의 평면을 가지는 모델기반 카메라 추적방법)

  • Lee, In-Pyo;Nam, Bo-Dam;Hong, Hyun-Ki
    • Journal of Korea Game Society
    • /
    • v.11 no.4
    • /
    • pp.143-149
    • /
    • 2011
  • This paper presents a novel camera tracking method based on model with multiple planes. The proposed algorithm detects QR code that is one of the most popular types of two-dimensional barcodes. A 3D model is imported from the detected QR code for augmented reality application. Based on the geometric property of the model, the vertices are detected and tracked using optical flow. A clipping algorithm is applied to identify each plane from model surfaces. The proposed method estimates the homography from coplanar feature correspondences, which is used to obtain the initial camera motion parameters. After deriving a linear equation from many feature points on the model and their 3D information, we employ DLT(Direct Linear Transform) to compute camera information. In the final step, the error of camera poses in every frame are minimized with local Bundle Adjustment algorithm in real-time.

Development of Automatic Hole Position Measurement System using the CCD-camera (CCD-카메라를 이용한 홀 변위 자동측정시스템 개발)

  • 김병규;최재영;강희준;노영식
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.127-130
    • /
    • 2004
  • For the quality control of the industrial products, an automatic hole measuring system has been developed. The measurement device allows X-Y movement due to contact forces between a hole and its own circular cone and the device is attached to an industrial robot. Its measurement accuracy is about 0.04mm. This movement of the plate is measured by two LVDT sensor system. But this system using the LVDT sensors is restricted by high cost and precision of measurement and correspondence of environment so particularly, a vision system with CCD-Camera is discussed in this paper for the above mentioned purpose. The device consists of two of two links jointed with hinge pins basically and, they guarantee free movement of the touch prove attached on the second link in the same plane. These links are returned to home position by the spring plungers automatically after each process for the next one. On the surface of the touch prove, it has a circular white mark for camera recognition. The system detect and notify the center coordinate of capture mark image through the image processing. Its measuring accuracy has been proved to be about $\pm$0.01mm through the repeated implementation over 200 times. This technique will shows the advantage of touch-indirect image capture idea using cone-shaped touch prove in various symmetrical shaped holes particulary, like tapped holes, chamfered holes, etc As a result, we attained our object in a view of the accuracy, economical efficiency, and functionality

  • PDF

Wind Castle: Typhoon Control by the Natural Intelligence of Batdam(1.5m) II (윈드캐슬: 밭담(1.5m)의 자연지능에 의한 태풍 제어 II)

  • Lee, Moon-Ho;Kim, Jeong-Su
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.3
    • /
    • pp.113-119
    • /
    • 2020
  • This paper proved the reason why the Batdam does not collapse in the 50m/s typhoon by the Circulation of the Stack Effect and traced the correlation with crops in spring, summer, autumn and winter. Batdam, which is built with oedam, is a magic wall wich is played the role of 3rd layer over 22,000km, when stacked in a field, has the inertia like a linear motion of constant velocity and resists winds no matter how strong it blows. We analyzed the reason of Batdam 1.5 meters, Oreum 200 times of Batdam, and Hallasan 1,300 times Batdam, and analyzed the resonance of the characteristic function. In this paper, we adapted to natural climate change, and we built a batdam to derive the height of the batdam and neutral plane for farming according to the seasonal characteristics, and designed the relationship between natural intelligence control.

Free Vibration Analysis of a Degenerated Timoshenko Beam Including the Effect of Shear Deformation and Rotatory Inertia (전단변형(剪斷變形)과 회전관성(回轉慣性)을 고려(考慮)한 Timoshenko 보의 자유진동(自由振動) 해석(解析))

  • Byun, Dong Kyun;Shin, Young Shik;Jang, Jong Tak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.4
    • /
    • pp.109-122
    • /
    • 1983
  • An accurate thick beam element (TB4) which includes the effects of the shear deformation and rotatory inertia has been degenerated from the three dimensional continuum by employing the Timoshenko beam assumptions. The proposed TB4 element has four nodes and two degrees of freedom at each node, totally eight degrees of freedom. The transverse deflection W and plane rotation ${\theta}$ with the cubic interpolation functions are selected as nodal variables. The element characteristics are formulated by discretizing the beam equations of motion, using the Galerkin weighted residual method, and are numerically integrated by the reduced shear integration technique, using the three-point Gauss quadrature with the various shear coefficients. Several numerical examples are analyzed to demonstrate the accuracy and the monotonic convergence behavior of the proposed TB4 beam element. The result indicates that the TB4 element shows the more excellent performance and the monotonic convergence behavior than the other existing Timoshenko beam type elements for the whole range of the beam aspect ratios, in both static and free vibration analyses.

  • PDF

Topology Design Optimization of Plate Buckling Problems Considering Buckling Performance (좌굴성능을 고려한 평판 좌굴문제의 위상설계최적화)

  • Lee, Seung-Wook;Ahn, Seung-Ho;Cho, Seonho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.441-449
    • /
    • 2015
  • In this paper we perform a linearized buckling analysis using the Kirchhoff plate theory and the von Karman nonlinear strain-displacement relation. Design sensitivity analysis(DSA) expressions for plane elasticity and buckling problems are derived with respect to Young's modulus and thickness. Using the design sensitivity, we can formulate the topology optimization method for minimizing the compliance and maximizing eigenvalues. We develop a topology optimization method applicable to plate buckling problems using the prestress for buckling analysis. Since the prestress is needed to assemble the stress matrix for buckling problem using the von Karman nonlinear strain, we introduced out-of-plane motion. The design variables are parameterized into normalized bulk material densities. The objective functions are the minimum compliance and the maximum eigenvalues and the constraint is the allowable volume. Through several numerical examples, the developed DSA method is verified to yield very accurate sensitivity results compared with the finite difference ones and the topology optimization yields physically meaningful results.

Kinematic Study for the Structural Analysis of the Frame Box of Vessel Engines (선박용 엔진 프레임 박스의 구조해석을 위한 기구학적 분석)

  • Lee, Jae-Hoon;Choi, Jong-Ho;Cho, Jin-Rae;Lee, In-Soo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.565-572
    • /
    • 2007
  • This paper addresses the kinematic study for the structural analysis of the S60ME-C multi-cylinder vessel engine. The load conditions such as the lateral force and the reaction force by the crank-shaft are required for the FEM analysis. The driving parts in vessel engine are assumed to be in frictionless rigid plane motion. We analytically derive dynamic forces for a single cylinder by using the dynamic force equilibrium. But, for the structural analysis for a single cylinder block, we use the loading conditions of two neighboring cylinders. Meanwhile, we use the single cylinder's loading condition to calculate the multi-cylinder's loading conditions, because each cylinder shows a cyclic loading pattern with respect to the crank arm's rotation angle.

Bending analysis of functionally graded thick plates with in-plane stiffness variation

  • Mazari, Ali;Attia, Amina;Sekkal, Mohamed;Kaci, Abdelhakim;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.409-421
    • /
    • 2018
  • In the present paper, functionally graded (FG) materials are presented to investigate the bending analysis of simply supported plates. It is assumed that the material properties of the plate vary through their length according to the power-law form. The displacement field of the present model is selected based on quasi-3D hyperbolic shear deformation theory. By splitting the deflection into bending, shear and stretching parts, the number of unknowns and equations of motion of the present formulation is reduced and hence makes them simple to use. Governing equations are derived from the principle of virtual displacements. Numerical results for deflections and stresses of powerly graded plates under simply supported boundary conditions are presented. The accuracy of the present formulation is demonstrated by comparing the computed results with those available in the literature. As conclusion, this theory is as accurate as other shear deformation theories and so it becomes more attractive due to smaller number of unknowns. Some numerical results are provided to examine the effects of the material gradation, shear deformation on the static behavior of FG plates with variation of material stiffness through their length.

A Response to Postural Response to Sine Curve Vestibular Electric Stimulation during Standing (기립자세동안 전정기관에 인가된 정현파 전류자극에 대한 자세균형 응답)

  • Lee, Ah-Reum;Yu, Mi;Kim, Jin-Ho;Kim, Dong-Wook;Kim, Jung-Ja
    • Journal of Biomedical Engineering Research
    • /
    • v.31 no.3
    • /
    • pp.210-216
    • /
    • 2010
  • This study is vestibular electric stimulation applied between the mastoids during quiet standing elicits postural sway. The aim of this study was to characterize the postural sway response to continuous sinusoidal vestibular electric stimulation across various stimulus frequencies and amplitudes. Binaural bipolar sinusoidal vestibular electric stimulation was applied to the skin overlying the mastoid processes of 10 subjects while they stood on a force plate. The position of the center of pressure(COP) and signals at the feet are obtained on an force plate, while the head and whole body center of mass(COM) was measured with motion analysis system. The stimulus conditions included eight frequencies (1/64, 1/32, 1/16, 1/8, 1/4, 1/2, 1, and 2Hz) and six peak amplitudes (0.1, 0.25, 0.5, 0.7, 1 and 2mA). Each subject experienced one trial at each amplitude-frequency pair. The stimuli elicited sway in lateral plane in all subjects, as evidenced by changes in the stimulus frequency. Our results demonstrate that the vestibular system is sensitive to vestibular electric stimulation intensity changes and responds by altering the magnitude of the response accordingly.

Gesture Interface for Controlling Intelligent Humanoid Robot (지능형 로봇 제어를 위한 제스처 인터페이스)

  • Bae Ki Tae;Kim Man Jin;Lee Chil Woo;Oh Jae Yong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.10
    • /
    • pp.1337-1346
    • /
    • 2005
  • In this paper, we describe an algorithm which can automatically recognize human gesture for Human-Robot interaction. In early works, many systems for recognizing human gestures work under many restricted conditions. To eliminate these restrictions, we have proposed the method that can represent 3D and 2D gesture information simultaneously, APM. This method is less sensitive to noise or appearance characteristic. First, the feature vectors are extracted using APM. The next step is constructing a gesture space by analyzing the statistical information of training images with PCA. And then, input images are compared to the model and individually symbolized to one portion of the model space. In the last step, the symbolized images are recognized with HMM as one of model gestures. The experimental results indicate that the proposed algorithm is efficient on gesture recognition, and it is very convenient to apply to humanoid robot or intelligent interface systems.

  • PDF