• Title/Summary/Keyword: In-Mold Coating

Search Result 128, Processing Time 0.029 seconds

An Experimental Study of In-Mold Coating of Automotive Armrests (자동차 암레스트의 인몰드코팅에 관한 실험적 연구)

  • Park, Jong Rak;Lee, Ho Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.7
    • /
    • pp.687-692
    • /
    • 2015
  • A mold design for in-mold coating was developed to achieve simultaneous coating and injection molding of an automotive armrest. The developed mold includes one core and two cavities which are composed of a substrate cavity and a coating cavity. The core was attached to a movable plate and two cavities were mounted on a plate sliding in a stationary plate. In a two-step process, the part was first injection molded and subsequently, with the aid of a sliding table, was transferred to a second cavity. The materials used were PC/ABS for substrate and two-component polyurethane for coating. The experiments were conducted by changing the flow rate to investigate mixing characteristics. As the flow rate increased, the mixing improved. Additionally, the bubbles appeared over the substrate surface decreased with an increase of the weight of injected coating material.

Improving Strength in Casting Mold by Control of Starting Material and Process

  • Cho, Geun-Ho;Kim, Eun-Hee;Jung, Yeon-Gil
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.541-547
    • /
    • 2016
  • In developing high temperature molds with advantages of the sand and precision (investment) castings, mechanical properties of the mold were improved through homogeneous coating of starting powders with an inorganic binder and improvement of fabrication process. Beads with mullite composition were employed for properties of the mold under high temperature, which was compared with artificial sands. Precursors of silica and sodium oxide were used as starting materials for an inorganic binder to achieve homogeneous coating on the starting powders. Strength was enhanced by the glass phase converted from the inorganic binder through heat treatment process. Also, two kinds of process, wet and dry processes, were incorporated to prepare mold specimens. Consequently, fabrication process of the mold with superior strength and high temperature applicability, compared with the previous molds for sand casting, could be suggested through control of the starting material and enhancement of the vitrification efficiency.

Structural Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 구조해석 비교)

  • 원종진;이종선;홍석주;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.181-187
    • /
    • 2000
  • This study is object to structural analysis comparison of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. For structural analysis using thermal analysis result from ANSYS. In other to structural analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Thermal Analysis Comparison of Continuous Casting Mold (연속주조 몰드의 열해석 비교)

  • 원종진;이종선;윤희중;이현곤
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.200-205
    • /
    • 2000
  • This study is object to thermal analysis comparison of continuous casting mold. A two-dimensional transient finite element model was developed to compute the temperature distribution for continuous casting mold. For thermal analysis using analysis result from ANSYS. In other to thermal analysis of continuous casting mold, many variables such as casting speed, cooling condition, film coefficient, convection and load condition are considered.

  • PDF

Effects of Superheat and Coating Layer on Interfacial Heat Transfer Coefficient between Copper Mold and Aluminum Melt during Solidification (응고중 구리 주형과 알루미늄 용탕의 계면열전달계수에 미치는 용탕과열도와 도형재의 영향)

  • Kim, Hee-Soo;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.24 no.5
    • /
    • pp.281-289
    • /
    • 2004
  • The present study focused on the estimation of the interfacial heat transfer coefficient as a function of the surface temperature of the aluminum casting at the mold/casting interface to investigate the effects of superheat and coating layer. The casting experiments of aluminum into a cylindrical copper mold were systematically conducted to obtain the thermal history during solidification. The thermal history recorded by four thermocouples embedded both in the mold and the casting was used to solve the inverse heat conduction problem using Beck's method. The effects of superheat and coating on the interfacial heat transfer coefficient in the liquid state, during the solidification, and in the solid state were comparatively discussed. In the liquid state, the interfacial heat transfer coefficient is thought to be affected by the roughness of the mold, the wettability of the casting on the mold surface, and the thermophysical properties of the coating layer. When the solidification begins, the air gap forms between the casting and the mold, and the interfacial heat transfer coefficient becomes a function of the air gap as well as surface roughness and the superheat. In the solid phase, it depends only upon the thermal conductivity and the thickness of the air gap. The coating layer reduces seriously the interfacial heat transfer coefficient in the liquid state and during the solidification.

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

Effect of Mold Coatings on the Macrostructures of Cu-5%Sn Alloy (Cu-5% Sn합금(合金)의 주조조직(鑄造組織)에 미치는 도형재(塗型材)의 영향(影響)에 관(關)한 연구(硏究))

  • Choi, Young-Sung;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.5 no.3
    • /
    • pp.19-26
    • /
    • 1985
  • This study has been carried out to examine into wettability of Cu-5%Sn alloy in $Al_2O_3$, MgO, $SiO_2$ and graphite, respectively and investigated into the change in macrostructure of Cu-5%Sn alloy according to kind and mixing rate of mold-coating. The results obtained from the experiment are summerized as follows; 1. Cu Cu-5%Sn alloy, wettabilities of $Al_2O_3$ and MgO were good, on the other hand, wettabilities of $SiO_2$ and graphite were bad. 2. The fine equiaxed zone was created because of the role of $Al_2O_3$ and MgO as preferential nucleation sites. 3. Notwithstanding change of mixing rate of $SiO_2$ in mold coating the equixed zone was not created. 4. The area of equiaxed zone was varied according to mixing rate in the case of using $Al_2O_3$ and MgO in mold-coating.

  • PDF

DLC Coating Effect of WC Core Surface for Glass Molding Lens (비구면 Glass 렌즈 성형용 초경합금(WC) 코어의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Hwa;Park, Yong-Pil;Kim, Sang-Suk;Kim, Hye-Jeong;Kim, Jeong-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.11
    • /
    • pp.1050-1054
    • /
    • 2006
  • There have been intensive and continuous efforts in the field of DLC coating process because of their feature, like high hardness, high elasticity, abrasion resistance and chemical stability and have been applied widely the industrial areas. In this research, optimal grinding condition was investigated using Microlens Process Machine for the development of aspheric glass lens which is to be used for mobile phone module with 3 mega pixel and 2.5X optical zoom, and tungsten carbide(WC) mold cote was manufactured using high performance ultra precision machining and the effects of DLC coating on the form accuracy(PV) and surface roughness(Ra) of WC mold core was evaluated.

Development of Higher Functional Coating Agents for Pulp Mold (II) -Manufacture of mixed coating agents- (펄프몰드용 새로운 고기능 코팅제 제조기술개발(제2보) -혼합코팅제 제조-)

  • 강진하;임현아
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.19-26
    • /
    • 2003
  • In recent years, numerous studies have been carried out to find out the possible substitution of PE-coated paperboards used in packaging of watery or oily foods. Accordingly, this study was carried out to obtain the basic data for producing higher functional coating agents for pulp mold by evaluating various kinds of mixed coating agents. At that time, two kinds of synthetic coating agents(AKD, PYA) and three kinds of natural coating agent(CMC, corn starch, oxidized starch) were used for making the mixed coating agents respectively. Physical properties of coated paperboards were tested. Conclusions obtained from this study were as follows. Based on concentrations, the proper mixture ratios were 10:90(AKD:CMC), 10:90(AKD:corn starch), 10:90(AKD:oxidized starch), 40:60(PVA:CMC), 20:80(PVA:corn starch) and 20:80(PYA:oxidized starch). The mixed coating agent of PYA:corn starch(20:80) was the most efficient coating agent. Consequently, water and oil resistance were improved even with much addition of natural coating agents. We consider that they can be suitable for the packaging used in the storage of higher moisture vegetables and other food, and also can be suitable for oily fried food.