Objective : We conducted this study to evaluate the clinical impact of early enteral nutrition (EN) on in-hospital mortality and outcome in patients with critical hypertensive intracerebral hemorrhage (ICH). Methods : We retrospectively analyzed 123 ICH patients with Glasgow Coma Scale (GCS) score of 3-12. We divided the subjects into two groups : early EN group (< 48 hours, n = 89) and delayed EN group ($\geq$ 48 hours, n = 34). Body weight, total intake and output, serum albumin, Creactive protein, infectious complications, morbidity at discharge and in-hospital mortality were compared with statistical analysis. Results : The incidence of nosocomial pneumonia and length of intensive care unit stay were significantly lower in the early EN group than in the delayed EN group (p < 0.05). In-hospital mortality was less in the early EN group than in the delayed EN group (10.1% vs. 35.3%, respectively; p = 0.001). By multivariate analysis, early EN [odds ratio (OR) 0.229, 95% CI : 0.066-0.793], nosocomial pneumonia (OR = 5.381, 95% CI : 1.621-17.865) and initial GCS score (OR = 1.482 95% CI : 1.160-1.893) were independent predictors of in-hospital mortality in patients with critical hypertensive ICH. Conclusion : These findings indicate that early EN is an important predictor of outcome in patients with critical hypertensive ICH.
Ah Young Leem;Soyul Han;Kyung Soo Chung;Su Hwan Lee;Moo Suk Park;Bora Lee;Young Sam Kim
The Korean journal of internal medicine
/
v.39
no.4
/
pp.625-639
/
2024
Background/Aims: Intensive care unit (ICU) quality is largely determined by the mortality rate. Therefore, we aimed to develop and validate a novel prognostic model for predicting mortality in Korean ICUs, using national insurance claims data. Methods: Data were obtained from the health insurance claims database maintained by the Health Insurance Review and Assessment Service of South Korea. From patients who underwent the third ICU adequacy evaluation, 42,489 cases were enrolled and randomly divided into the derivation and validation cohorts. Using the models derived from the derivation cohort, we analyzed whether they accurately predicted death in the validation cohort. The models were verified using data from one general and two tertiary hospitals. Results: Two severity correction models were created from the derivation cohort data, by applying variables selected through statistical analysis, through clinical consensus, and from performing multiple logistic regression analysis. Model 1 included six categorical variables (age, sex, Charlson comorbidity index, ventilator use, hemodialysis or continuous renal replacement therapy, and vasopressor use). Model 2 additionally included presence/absence of ICU specialists and nursing grades. In external validation, the performance of models 1 and 2 for predicting in-hospital and ICU mortality was not inferior to that of pre-existing scoring systems. Conclusions: The novel and simple models could predict in-hospital and ICU mortality and were not inferior compared to the pre-existing scoring systems.
The purpose of this study was to compare the risk-adjusted in-hospital mortality for craniotomies between logistic regression and multilevel analysis. By using patient sample data from the Health Insurance Review & Assessment Service, in-patients with a craniotomy were selected as the survey target. The sample data were collected from a total number of 2,335 patients from 90 hospitals. The sample data were analyzed with SAS 9.3. From the results of the existing logistic regression analysis and multilevel analysis, the values from the multilevel analysis represented a better model than that of logistic regression. The intra-class correlation (ICC) was 18.0%. It was found that risk-adjusted in-hospital mortality for craniotomies may vary in every hospital. The agreement by kappa coefficient between the two methods was good for the risk-adjusted in-hospital mortality for craniotomies, but the factors influencing the outcome for that were different.
Purpose: The scoring system for traumatic liver injury (SSTLI) was developed in 2015 to predict mortality in patients with polytraumatic liver injury. This study aimed to validate the SSTLI as a prognostic factor in patients with polytrauma and liver injury through a generalized estimating equation analysis. Methods: The medical records of 521 patients with traumatic liver injury from January 2015 to December 2019 were reviewed. The primary outcome variable was in-hospital mortality. All the risk factors were analyzed using multivariate logistic regression analysis. The SSTLI has five clinical measures (age, Injury Severity Score, serum total bilirubin level, prothrombin time, and creatinine level) chosen based on their predictive power. Each measure is scored as 0-1 (age and Injury Severity Score) or 0-3 (serum total bilirubin level, prothrombin time, and creatinine level). The SSTLI score corresponds to the total points for each item (0-11 points). Results: The areas under the curve of the SSTLI to predict mortality on post-traumatic days 0, 1, 3, and 5 were 0.736, 0.783, 0.830, and 0.824, respectively. A very good to excellent positive correlation was observed between the probability of mortality and the SSTLI score (γ=0.997, P<0.001). A value of 5 points was used as the threshold to distinguish low-risk (<5) from high-risk (≥5) patients. Multivariate analysis using the generalized estimating equation in the logistic regression model indicated that the SSTLI score was an independent predictor of mortality (odds ratio, 1.027; 95% confidence interval, 1.018-1.036; P<0.001). Conclusions: The SSTLI was verified to predict mortality in patients with polytrauma and liver injury. A score of ≥5 on the SSTLI indicated a high-risk of post-traumatic mortality.
Background: Surgical treatment of empyema thoracis in patients with chronic kidney disease is challenging, and few studies in the literature have evaluated this issue. In this study, we aim to report the surgical outcomes of empyema and to analyze factors predicting perioperative mortality in patients with chronic kidney disease. Methods: This retrospective study included data from 34 patients with chronic kidney disease (estimated glomerular filtration rate <60 mL/min/1.73 ㎡ for 3 or more months) who underwent surgery for empyema between 2012 and 2020. An analysis of demographic characteristics and perioperative variables, including complications, was carried out. Postoperative mortality was the primary outcome measure. Results: Patients' age ranged from 20 to 74 years with a 29-to-5 male-female ratio. The majority (n=19, 55.9%) of patients were in end-stage renal disease (ESRD) requiring maintenance hemodialysis. The mean operative time was 304 minutes and the mean intraoperative blood loss was 562 mL. Postoperative morbidity was observed in 70.5% of patients (n=24). In the subgroup analysis, higher values for operative time, blood loss, intensive care unit stay, and complications were found in ESRD patients. The mortality rate was 38.2% (n=13). In the univariate and multivariate analyses, poor performance status (Eastern Cooperative Oncology Group >2) (p=0.03), ESRD (p=0.02), and late referral (>8 weeks) (p<0.001) significantly affected mortality. Conclusion: ESRD, late referral, and poor functional status were poor prognostic factors predicting postoperative mortality. The decision of surgery should be cautiously assessed given the very high risk of perioperative morbidity and mortality in these patients.
Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Seheon Kim;Hong Rye Kim
Journal of Trauma and Injury
/
v.36
no.4
/
pp.329-336
/
2023
Purpose: In this study, we aimed to compare the characteristics of patients with trauma by age group in a single center in Korea to identify the clinical characteristics and analyze the risk factors affecting mortality. Methods: Patients aged ≥18 years who visited the Chungbuk National University Hospital Regional Trauma Center between January 2016 and December 2022 were included. The accident mechanism, severity of the injury, and outcomes were compared by classifying the patients into group A (18-64 years), group B (65-79 years), and group C (≥80 years). In addition, logistic regression analysis was performed to identify factors affecting death. Results: The most common injury mechanism was traffic accidents in group A (40.9%) and slipping in group B (37.0%) and group C (56.2%). Although group A had the highest intensive care unit admission rate (38.0%), group C had the highest mortality rate (9.5%). In the regression analysis, 3 to 8 points on the Glasgow Coma Scale had the highest odds ratio for mortality, and red blood cell transfusion within 24 hours, intensive care unit admission, age, and Injury Severity Score were the predictors of death. Conclusions: For patients with trauma, the mechanism, injured body region, and severity of injury differed among the age groups. The high mortality rate of elderly patients suggests the need for different treatment approaches for trauma patients according to age. Identifying factors affecting clinical patterns and mortality according to age groups can help improve the prognosis of trauma patients in the future.
Jong Eun Lee;Won Gi Jeong;Hyo-Jae Lee;Yun-Hyeon Kim;Kum Ju Chae;Yeon Joo Jeong
Korean Journal of Radiology
/
v.23
no.10
/
pp.998-1008
/
2022
Objective: The present study aimed to assess the relationship between incidental abnormalities on thoracic computed tomography (CT) and mortality in a general screening population using a long-term follow-up analysis. Materials and Methods: We retrospectively collected the medical records and CT images of 840 participants (mean age ± standard deviation [SD], 58.5 ± 6.7 years; 564 male) who underwent thoracic CT at a single health promotion center between 2007 and 2010. Two thoracic radiologists independently reviewed all CT images and evaluated any incidental abnormalities (interstitial lung abnormality [ILA], emphysema, coronary artery calcification [CAC], aortic valve [AV] calcification, and pulmonary nodules). Kaplan-Meier analysis with log-rank and z-tests was performed to assess the relationship between incidental CT abnormalities and all-cause mortality in the subsequent follow-up. Cox proportional hazards regression was performed to further identify risk factors of all-cause mortality among the incidental CT abnormalities and clinical factors. Results: Among the 840 participants, 55 (6%), 171 (20%), 288 (34%), 396 (47%), and 97 (11%) had findings of ILA, emphysema, CAC, pulmonary nodule, and AV calcification, respectively, on initial CT. The participants were followed up for a mean period ± SD of 10.9 ± 1.4 years. All incidental CT abnormalities were associated with all-cause mortality in univariable analysis (p < 0.05). However, multivariable analysis further revealed fibrotic ILA as an independent risk factor for all-cause mortality (hazard ratio, 2.52 [95% confidence interval, 1.02-6.22], p = 0.046). ILA were also identified as an independent risk factor for lung cancer or respiratory disease-related deaths. Conclusion: Incidental abnormalities on screening thoracic CT were associated with increased mortality during the long-term follow-up. Among incidental CT abnormalities, fibrotic ILA were independently associated with increased mortality. Appropriate management and surveillance may be required for patients with fibrotic ILA on thoracic CT obtained for general screening purposes.
Jonghee Han;Su Young Yoon;Junepill Seok;Jin Young Lee;Jin Suk Lee;Jin Bong Ye;Younghoon Sul;Se Heon Kim;Hong Rye Kim
Journal of Trauma and Injury
/
v.37
no.3
/
pp.201-208
/
2024
Purpose: The number of elderly patients with trauma is increasing; therefore, precise models are necessary to estimate the mortality risk of elderly patients with trauma for informed clinical decision-making. This study aimed to develop machine learning based predictive models that predict 30-day mortality in severely injured elderly patients with trauma and to compare the predictive performance of various machine learning models. Methods: This study targeted patients aged ≥65 years with an Injury Severity Score of ≥15 who visited the regional trauma center at Chungbuk National University Hospital between 2016 and 2022. Four machine learning models-logistic regression, decision tree, random forest, and eXtreme Gradient Boosting (XGBoost)-were developed to predict 30-day mortality. The models' performance was compared using metrics such as area under the receiver operating characteristic curve (AUC), accuracy, precision, recall, specificity, F1 score, as well as Shapley Additive Explanations (SHAP) values and learning curves. Results: The performance evaluation of the machine learning models for predicting mortality in severely injured elderly patients with trauma showed AUC values for logistic regression, decision tree, random forest, and XGBoost of 0.938, 0.863, 0.919, and 0.934, respectively. Among the four models, XGBoost demonstrated superior accuracy, precision, recall, specificity, and F1 score of 0.91, 0.72, 0.86, 0.92, and 0.78, respectively. Analysis of important features of XGBoost using SHAP revealed associations such as a high Glasgow Coma Scale negatively impacting mortality probability, while higher counts of transfused red blood cells were positively correlated with mortality probability. The learning curves indicated increased generalization and robustness as training examples increased. Conclusions: We showed that machine learning models, especially XGBoost, can be used to predict 30-day mortality in severely injured elderly patients with trauma. Prognostic tools utilizing these models are helpful for physicians to evaluate the risk of mortality in elderly patients with severe trauma.
Objectives : To assess whether the risk-adjusted in-hospital mortality rates for non-emergent and isolated coronary artery bypass graft surgery (CABG) patients exhibited a consistent trend from 2001 to 2003. Methods : The data used in this study came from CABG claims that were submitted to a Korean Health Insurance Review Agency (HIRA) in 2001, 2002, and 2003. Study datasets included data from 17 tertiary hospitals, which had at least 25 claims each year over 3 years. The inter-hospital differences in patients' risk-factors were identified and controlled in the risk-adjustment model. Actual and predicted mortality rates for each hospital were calculated in 2001, 2002, 2003, and 2001+2002, and were then examined to identify consistent rate patterns over time. Kappa analysis was applied to assess the agreements between rates. Results : Hospitals with lower-than-expected inpatient mortality rates showed more consistent rates than those with higher-than-expected mortality rates. The mortality rates that were calculated based on data obtained over multiple years had less variation among hospitals than rates based on single year data. Based on the Kappa score, the highest agreement was found when the rates were compared between the 2-year combined data (2001+2002) and 2003. Conclusions : Consistent patterns over 3 years were most evident for hospitals which had lower-than expected mortality rates. Policy makers can use this information to identify the degree of outcomes in hospitals and help motivate or channel the behaviors of providers.
Oh, Tak Kyu;Jo, Jihoon;Jeon, Young-Tae;Song, In-Ae
Acute and Critical Care
/
v.33
no.4
/
pp.230-237
/
2018
Background: Socioeconomic status (SES) is closely associated with health outcomes, including mortality in critically ill patients admitted to intensive care unit (ICU). However, research regarding this issue is lacking, especially in countries where the National Health Insurance System is mainly responsible for health care. This study aimed to investigate how the SES of ICU patients in South Korea is associated with mortality. Methods: This was a retrospective observational study of adult patients aged ${\geq}20$ years admitted to ICU. Associations between SES-related factors recorded at the time of ICU admission and 30-day and 1-year mortalities were analyzed using univariable and multivariable Cox regression analyses. Results: A total of 6,008 patients were included. Of these, 394 (6.6%) died within 30 days of ICU admission, and 1,125 (18.7%) died within 1 year. Multivariable Cox regression analysis found no significant associations between 30-day mortality after ICU admission and SES factors (P>0.05). However, occupation was significantly associated with 1-year mortality after ICU admission. Conclusions: Our study shows that 30-day mortality after ICU admission is not associated with SES in the National Health Insurance coverage setting. However, occupation was associated with 1-year mortality after ICU admission.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.