• 제목/요약/키워드: In vivo kinetics

검색결과 59건 처리시간 0.026초

In Vivo $^{13}C$-NMR Spectroscopic Study of Polyhydroxyalkanoic Acid Degradation Kinetics in Bacteria

  • Oh, Jung-Sook;Choi, Mun-Hwan;Yoon, Sung-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • 제15권6호
    • /
    • pp.1330-1336
    • /
    • 2005
  • Polyhydroxyalkanoic acid (PHA) inclusion bodies were analyzed in situ by $^{13}C$-nuclear magnetic resonance ($^{13}C$-NMR) spectroscopy. The PHA inclusion bodies studied were composed of poly(3-hydroxybutyrate) or poly(3hydroxybutyrate-co-4-hydroxybutyrate), which was accumulated in Hydrogenophaga pseudoflava, and medium-chain-length PHA (MCL-PHA), which was accumulated in Pseudomonas fluorescens BM07 from octanoic acid or 11-phenoxyundecanoic acid (11-POU). The quantification of the $^{13}C$-NMR signals was conducted against a standard compound, sodium 2,2-dimethyl-2-silapentane-5-sulfonate (DSS). The chemical shift values for the in vivo NMR spectral peaks agreed well with those for the corresponding purified PHA polymers. The intracellular degradation of the PHA inclusions by intracellular PHA depolymerase(s) was monitored by in vivo NMR spectroscopy and analyzed in terms of first-order reaction kinetics. The H. pseudoflava cells were washed for the degradation experiment, transferred to a degradation medium without a carbon source, but containing 1.0 g/l ammonium sulfate, and cultivated at $35^{\circ}C$ for 72 h. The in vivo NMR spectra were obtained at $70^{\circ}C$ for the short-chain-length PHA cells whereas the spectra for the aliphatic and aromatic MCL-PHA cells were obtained at $50^{\circ}C\;and\;80^{\circ}C$, respectively. For the H. pseudoflava cells, the in vivo NMR kinetics analysis of the PHA degradation resulted in a first-order degradation rate constant of 0.075/h ($r^{2}$=0.94) for the initial 24 h of degradation, which was close to the 0.050/h determined when using a gas chromatographic analysis of chloroform extracts of sulfuric acid/methanol reaction mixtures of dried whole cells. Accordingly, it is suggested that in vivo $^{13}C$-NMR spectroscopy is an important tool for studying intracellular PHA degradation in terms of kinetics.

FOLDING-UNFOLDING KINETICS OF HUMAN $\alpha_1$-ANTITRYPSIN: CHARACTERIZATION OF A KINETIC INTERMEDIATE THAT IS BRANCHED TO THE NATIVE AND AGGREGATION FORM

  • Kim, Daeyou;Yu, Myeong-Hee
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1996년도 정기총회 및 학술발표회
    • /
    • pp.13-13
    • /
    • 1996
  • Aggregation of human $\alpha$$_1$-antitrypsin ($\alpha$$_1$-AT) during folding occurs both in vitro and in vivo. In vivo aggregates of mutant $\alpha$$_1$-AT such as $M_{malton}$ (Phe52 deleted) and Z (Glu342 longrightarrowLys) variants have pathological consequences. In order to analyze the process of $\alpha$$_1$-AT aggregation in detail, the folding-unfolding kinetics of $\alpha$$_1$-AT was examined by monitoring intrinsic Trp fluorescence and ANS binding. (omitted)

  • PDF

Pteridine계 화합물의 in-vivo 형광 특성을 이용한 식물 플랑크톤의 동정에 관한 연구 (In-vivo Fluorescence Characteristics of Pteridine for Identification of Phytoplankton)

  • 박미옥
    • 한국수산과학회지
    • /
    • 제25권3호
    • /
    • pp.219-228
    • /
    • 1992
  • 와편모조류, 남조류, Chloromonadophyceae와 Cryptophyceae를 포함한 12종의 해양 식물플랑크톤의 일차적 형광특성을 in vivo 상태에서 조사하였다. 형광과 exciatation 스펙트럼을 측정한 결과 약 380-435nm 영역에서 강한 세기의 형광 스펙트럼이, 조사된 모든 식물플랑크톤으로부터 얻어졌다. 식물플랑크톤의 성장 상태의 변화에 따른 형광 스펙트럼의$\lambd_{max}$에 대한 영향을 관찰하였다. 관찰된 형광 스펙트럼의 형광소를 밝히기 위하여, 식물플랑크톤의 구성성분 중에 유사한 형광 특성을 보이는 8가지 pteridine계 화합물의 phosphate 완충용액에 대한 형광 특성과 식물플랑크톤의 380-435nm 영역에서 나타난 스펙트럼의 세기와 모양, $\lambd_{max}$를 비교하였다. 식물플랑크톤의 fluorescence lifetime$(\tau)$과 fluorescence decay curve를 식물플랑크톤에 존재하는 유기화합물들의 표준용액의 $\tau$값과 비교하였다. 430 nm의 들뜨기 파장을 사용하여 얻은 식물플랑크톤의 fluorescence decay는 biexponential과 triexponential decay를 보였다. 박테리아와 식물플랑크톤의 형광 특성을 비교한 결과 형광 스펙트라뿐 아니라 붕괴 양상도 현저한 차이점을 보였다.

  • PDF

클로르프로마진의 클로르프로마진 설폭시드로의 대사동태 (Metabolite Kinetics of Chlorpromazine to Chlorpromazine Sulfoxide in Rats)

  • 정숙진;나한광;이용복
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권4호
    • /
    • pp.215-221
    • /
    • 1998
  • In order to elucidate the fraction of sulfoxidation in the over all in vivo metabolism of chlorpromazine (CPZ), the sulfoxidation of CPZ to chlorpromazine sulfoxide (CPZSO) was studied in rats. CPZ (10 mg/kg) and CPZSO (1 mg/kg) were injected into the rat femoral vein, respectively. And the pharmacokinetic parameters were obtained from the plasma concentration-time profiles of CPZ and CPZSO determined by the simultaneous analysis using high-performance liquid chromatography. It was supposed that these drugs were almost metabolized in vivo because the total excreted amounts of CPZ and CPZSO via urinary and biliary route were lower than 1.4% and 10.61% of the administered dose, respectively. And also, it was found that the fraction of systemic clearance of CPZ which formed CPZSO $(F_{mi})$ was 0.115. These results showed that CPZ was sulfoxized by 11.5% in rats and the residue would be metabolized via the other routes.

  • PDF

Helicobacter pylori Urease May Exist in Two Forms: Evidence from the Kinetic Studies

  • Gang, Jin-Gu;Yun, Soon-Kyu;Hwang, Se-Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1565-1568
    • /
    • 2009
  • Purified Helicobacter pylori urease displayed a sigmoid curve in the plot of velocity versus [S] at urea concentrations less than 0.1mM. Under conditions where preservatives, glycerol, or polyethylene glycol (PEG) were added to the enzyme reaction, the substrate hydrolysis was consistent with Michaelis-Menten kinetics, with a $K_m$ of $0.21\;{\pm}\;0.06\;mM$ and a $V_{max}$ of $1,200\;{\pm}\;300\;{\mu}mol\;min^{-1}\;mg^{-1}$. However, at saturating substrate concentrations, the kinetic parameters of H. pylori urease were unaffected by the presence of the preservatives, and enzyme catalysis conformed to Michaelis-Menten kinetics. The Hill coefficients of the enzyme-catalyzed urea hydrolysis in the presence and absence of PEG were 1 and 2, respectively. Based on these findings, we suggest that H. pylori urease may exist in aggregated and dissociated forms, each with intact function but differing kinetics that may be of importance in maximizing urea breakdown at varying urea concentrations in vivo.

In vivo Characterization of Sustained-Release Formulation of Recombinant Human Growth Hormone in Immunosuppressed Rats and Dogs

  • Jo, Yeong-Woo;Park, Yong-Man;Lee, Ghun-Il;Yang, Hi-Chang;Kim, Mi-Ryang;Lee, Sung-Hee;Kwon, Jong-Won;Kim, Won-Bae;Choi, Eung-Chil
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.424.2-424.2
    • /
    • 2002
  • The in vivo release characteristics of rhGH-loaded PLGA microsphere prepared using a double emulsion process from hydrophilic 50:50 poly(D.L-lactide-co-glycolide) (PLGA) polymers were analyzed. This formulation showed particle size of ca 53.1$\mu\textrm{m}$ with high drug incorporation efficiency. To investigate in vivo release kinetics without the interference of formation of antibodies to rhGH in the experimental animals, the animals were immunosuppressed by treatment with Cyclosporin. (omitted)

  • PDF

트리메부틴의 N-모노데스메칠 트리메부틴으로의 대사동태 (Metabolite Kinetics of Trimebutine to N-monodesmethyl Trimebutine in Rats)

  • 이용복;장우익;고익배
    • Journal of Pharmaceutical Investigation
    • /
    • 제28권2호
    • /
    • pp.73-80
    • /
    • 1998
  • In order to elucidate the effect of N-demethylation on the in vivo metabolite kinetics, especially hepatic first-pass effect of trimebutine(TMB), the N-demethylation of TMB to N-monodesmethyl trimebutine(N-TMB) was studied in rats. TMB(10 mg/kg) and N-TMB(10 mg/kg) were injected into the femoral and the portal vein, respectively. And the pharmacokinetic parameters were obtained from the plasma concentration-time profiles of TMB and N-TMB determined by the simultaneous analysis using high-performance liquid chromatography. It was supposed that these drugs were almost metabolized in vivo because the urinary and biliary excreated amounts of TMB and N-TMB were lower than 0.1% of the administered dose. According to the hepatic biotransformation model and metabolic pathways of TMB proposed, it was found that the fraction of systemic clearance of TMB which formed N-TMB in liver$(G_{mi})$ was 0.826, that of TMB which furnishes the available N-TMB to the systemic circulation$(F_{mi})$ was 0.083, and the absolute hepatic bioavailability of N-TMB formed trom TMB$(F_{mi.p})$ was 0.1. These results showed that TMB was suspected of the sequential hepatic first-pass metabolism and N-demethylated by 82.6%. Therefore, the residue would be hydrolyzed by the esterase in the liver. That is, the ability of N-demethylation of TMB was 4.75-fold larger than that of hydrolysis by the esterase in rats.

  • PDF

Chlorella배양(培養)에 있어서 $N^{15}$-표식(標識)와 생육경로(生育經路)에 관한 연구(硏究) (A Study on the $N^{15}-labelling$ and Path Way of Chlorella in the Course of Culture)

  • 황호관;유대하
    • 한국식품영양과학회지
    • /
    • 제13권4호
    • /
    • pp.403-405
    • /
    • 1984
  • Chlorella protein의 장기내(臟器內)로의 흡수상태(吸收狀態) 및 그 분포(分布) 등(等)을 알려면 chlorella protein을 동위원소(同位元素)로 표시(標識)해야 된다는 점에 착안(着眼)하여 chlorella를 생육(生育)할 때 $N^{15}$를 배양액(培養液)에다 첨가(添加)하여 $N^{15}$ 표식(標識)된 chlorella protein을 얻을 수 있는가를 검사(檢討)하였다. 배양액내(培養液內)의 N 및 $N^{15}$의 함량(含量)은 배양기간중(培養基間中) 경시적(經時的)으로 증가(增加)하였으나 조도(照度)를 없앤 어두운 상태에서는 증가(增加)하지 않았으며, N 및 $N^{15}$의 흡수상태(吸收狀熊)는 거의 평행(平行)인 것으로 보아 chlorella 막체내(漠體內)에 $N^{15}$가 흡수(吸收)되고 chlorella protein이 $N^{15}$로 표시(標識)된다는 것을 알 수 있었다.

  • PDF

Pharmacokinetics and Metabolism of Endothelin Receptor Antagonist: Contribution of Kidneys in the Overall In Vivo N-Demethylation

  • Chong, Sae-Ho;Obermeier, Mary;Humlherys, W.-Griffith
    • Archives of Pharmacal Research
    • /
    • 제26권1호
    • /
    • pp.89-94
    • /
    • 2003
  • In vivo clearance of BMS-182874 was primarily due to metabolism via stepwise N-demethylation. Despite in vivo clearance approached ca 50% of the total liver plasma flow, BMS-182874 was completely bioavailable after oral administration in rats. Saturable first-pass metabolism and the role of extrahepatic tissue were evaluated as possible reasons for complete oral bioavailability despite extensive metabolic clearance. Pharmacokinetic parameters were obtained after an intravenous and a range of oral doses of BMS-182874 in rats. Bile and urine were collected from bile-duct cannulated (BDC) rats and the in vivo metabolic pathways of BMS-182874 were evaluated. Pharmacokinetics of BMS-182874 were also compared in nephrectomized (renally impaired) vs. sham-operated control rats. Oral bioavailability of BMS-182874 averaged 100%, indicating that BMS-182874 was completely absorbed and the first-pass metabolism (liver or intestine) was negligible. The AUC and C/sub max/ values increased dose-proportionally, indicating kinetics were linear within the oral dose range of 13 to 290 mmole/kg. After intravenous administration of BMS-182874 to BDC rats, about 2% of intact BMS-182874 was recovered in excreta, indicating that BMS-182874 was cleared primarily via metabolism in vivo. The major metabolite circulating in plasma was the mono-N-desmethyl metabolite and the major metabolite recovered in excreta was the di-N-desmethyl metabolite. In vivo clearance of BMS-182874 was significantly reduced in nephrectomized rats. These observations suggest saturable first-pass metabolism is unlikely to be a mechanism for complete oral bioavailability of BMS-182874. Reduced clearance observed in the nephrectomized rats suggests that extrahepatic tissues (e.g., kidneys) may play an important role in the in vivo clearance of xenobiotics that are metabolized via N-demethylation.

Biosynthesized Platinum Nanoparticles Inhibit the Proliferation of Human Lung-Cancer Cells in vitro and Delay the Growth of a Human Lung-Tumor Xenograft in vivo -In vitro and in vivo Anticancer Activity of bio-Pt NPs-

  • Bendale, Yogesh;Bendale, Vineeta;Natu, Rammesh;Paul, Saili
    • 대한약침학회지
    • /
    • 제19권2호
    • /
    • pp.114-121
    • /
    • 2016
  • Objectives: Lung cancer remains a deadly disease with unsatisfactory overall survival. Cisplatin, a standard platinum (Pt)-based chemotherapeutic agent, has the potential to inhibit the growth of lung cancer. Its use, however, is occasionally limited by severe organ toxicity. However, until now, no systematic study has been conducted to verify its efficacy with proper experimental support in vivo. Therefore, we examined whether biosynthesized Pt nanoparticles (NPs) inhibited human lung cancer in vitro and in vivo to validate their use in alternative and complementary medicine. Methods: We evaluated the in vitro and the in vivo anticancer efficiencies of biosynthesized Pt NPs in a subcutaneous xenograft model with A549 cells. Severe combined immune deficient mice (SCID) were divided into four groups: group 1 being the vehicle control group and groups 2, 3 and 4 being the experimental groups. Once the tumor volume had reached $70-75mm^3$, the progression profile of the tumor growth kinetics and the body weights of the mice were measured every week for 6 weeks after oral administration of Pt NPs. Doses of Pt NPs of 500, 1,000 and 2,000 mg/kg of body weight were administered to the experimental groups and a dose of honey was administered to the vehicle control group. The efficacy was quantified by using the delay in tumor growth following the administration of Pt NPs of A549 human-lung-cancer xenografts growing in SCID mice. Results: The in vitro cytotoxicity evaluation indicated that Pt NPs, in a dose-dependent manner, inhibited the growth of A549 cells, and the in vivo evaluation showed that Pt NPs at the mid and high doses effectively inhibited and delayed the growth of lung cancer in SCID mice. Conclusion: These findings confirm the antitumor properties of biosynthesized Pt NPs and suggest that they may be a cost-effective alternative for the treatment of patients with lung cancer.