• Title/Summary/Keyword: In vivo development

Search Result 1,234, Processing Time 0.027 seconds

Discovering the anti-cancer phytochemical rutin against breast cancer through the methodical platform based on traditional medicinal knowledge

  • Jungwhoi Lee;Jungsul Lee;WooGwang Sim;Jae-Hoon Kim;Chulhee Choi;Jongwook Jeon
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.594-599
    • /
    • 2023
  • A number of therapeutic drugs have been developed from functional chemicals found in plants. Knowledge of plants used for medicinal purposes has historically been transmitted by word of mouth or through literature. The aim of the present study is to provide a systemic platform for the development of lead compounds against breast cancer based on a traditional medical text. To verify our systematic approach, integrating processes consisted of text mining of traditional medical texts, 3-D virtual docking screening, and in vitro and in vivo experimental validations were demonstrated. Our text analysis system identified rutin as a specific phytochemical traditionally used for cancer treatment. 3-D virtual screening predicted that rutin could block EGFR signaling. Thus, we validated significant anti-cancer effects of rutin against breast cancer cells through blockade of EGFR signaling pathway in vitro. We also demonstrated in vivo anti-cancer effects of rutin using the breast cancer recurrence in vivo models. In summary, our innovative approach might be proper for discovering new phytochemical lead compounds designing for blockade of malignant neoplasm including breast cancer.

  • PDF

The Effects of Oviduct and Uterine Epithelial Cells on the Expression of Interleukin-$1\beta$ Gene in Preimplantation Mouse Embryos (생쥐 초기배아에서 Interleukin-$1\beta$ 유전자의 발현에 미치는 수란관과 자궁내막세포의 영향)

  • 홍석호;계명찬;김종월;이정복;오은정;조동제;최규완;김문규
    • Development and Reproduction
    • /
    • v.3 no.1
    • /
    • pp.59-67
    • /
    • 1999
  • To investigate the role of interleukin-l$\beta$ (IL-1$\beta$) in the embryonic development, in vivo and in vitro expression patterns of IL-1$\beta$ gene in the preimplantation mouse embryos were examined by RT-PCR, and the effects of explanted mouse ovi-duct and uterine epithelial cells on the expression of IL-1$\beta$ gene in the pleimplantation mouse embryos were examined by co-culture. IL-1$\beta$ mRNA was detected in the embryos from 4-cell stage to blastocyst stage in vivo and from morula stage to hatching blastocyst stage in vitro. This transcript was not detected from the GV stage to late 2-cell stage in vivo, and not at the 4-cell and 8-cell stages in vitro. For the co-culture of late 2-cell embryos with the explanted mouse oviduct and uterine epithelial cells, oviducts and uterine epithelial cells were isolated at 48 hour alter the hCG injection. The explanted oviduct and uterine epithelial cells in co-culture groups facilitated the IL-1$\beta$ gene expression of the mouse embryos in comparison with the control. Taken together these results suggest that the presence of IL-1$\beta$ plays an important role in preimplantation embryonic development. In addition, the up-regulation of IL-1$\beta$ gene expression by the explanted oviduct and uterine epithelial cells demonstrates that embryonic expression of IL-l$\beta$ gene may be regulated by the interaction with oviductal and uterine factor (s).

  • PDF

Dynamic DNA Methylation Change of Dnmt1o 5'-Terminal Region during Preimplantation Development of Cloned Pig (돼지 체세포 복제란 초기발달 과정 중 Dnmt1o 상류 영역의 다이내믹한 DNA 메틸화 변화)

  • Ko, Yeoung-Gyu;Kim, Sung-Woo;Cho, Sang-Rae;Do, Yoon-Jung;Kim, Jae-Hwan;Kim, Sang-Woo;Kim, Hyun;Park, Jae-Hong;Park, Soo-Bong
    • Reproductive and Developmental Biology
    • /
    • v.36 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • DNA methyltransferase 1 (Dnmt1) gene contains three different isoform transcripts, Dnmt1s, Dnmt1o, and Dnmt1p, are produced by alternative usage of multiple first exons. Dnmt1o is specific to oocytes and preimplantation embryos, whereas Dnmt1s is expressed in somatic cells. Here we determined that porcine Dnmt1o gene had differentially methylated regions (DMRs) in 5'-flanking region, while those were not found in the Dnmt1s promoter region. The methylation patterns of the porcine Dnmt1o/Dnmt1s DMRs were investigated using bisulfite sequencing and pyrosequencing analysis through all preimplantation stages from one cell to blastocyst stage in in vivo or somatic cell nuclear transfer (SCNT). The Dnmt1o DMRs contained 8 CpG sites, which located in -640 bp to -30 bp upstream region from transcription start site of the Dnmt1o gene. The methylation status of 5 CpGs within the Dnmt1o DMRs were distinctively different at each stage from one-cell to blastocyst stage in the $in$ $vivo$ or SCNT, respectively. 55.62% methylation degree of the Dnmt1o DMRs in the $in$ $vivo$ was increased up to 84.38% in the SCNT embryo, moreover, $de$ $novo$ methylation and demethylation occurred during development of porcine embryos from the one-cell stage to the blastocyst stage. However, the DNA methylation states at CpG sites in the Dnmt1s promoter regions were hypomethylated, and dramatically not changed through one-cell to blastocyst stage in the $in$ $vivo$ or SCNT embryos. In the present study, we demonstrated that the DMRs in the promoter region of the porcine Dnmt1o was well conserved, contributing to establishment and maintenance of genome-wide patterns of DNA methylation in early embryonic development.

In Vivo Anti-tumor Activity of 3-Methyl-6-allylthiopyridazine in Nude Mice Xenografted with Hep-G2 Hepatocarcinoma

  • Kwon, Soon-Kyoung;Moon, Aree
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.113-117
    • /
    • 2005
  • Organosulfur compounds have been shown to exert an anti-cancer activity. In an attempt to develop novel chemopreventive and anti-cancer agents for liver cancer, we synthesized allylthiopyridazine derivatives. We have previously shown that allylthiopyridazine derivatives exert inhibitory effects on proliferation, invasion and migration of SK-Hep-1 hepatocarcinoma cells in vitro. The in vivo anti-tumor effect of 3-methvl-6-allylthiopy-ridazine, named as K6, was also reported. In this study, we further investigated the preclinical anti-cancer efficacy of K6 for hepatocarcinoma using nude mice xenografted with Hep-G2 hepatocellular carcinoma cells. K6(20-100 mg/kg, orally administered everyday for 30 days) markedly decreased the tumor volume of Hep-G2 cell-transplanted nude mice as evidenced by ultrasonographic and plethysmogranhic analyses. The inhibitory effect on tumor volume was lower than that exerted by doxorubicin (2 mg/kg), intravenously injected) which was used as a positive control. This study shows that K6 efficiently suppresses xenograft tumor growth, revealing K6 as apotential anti-cancer agent for suppressing in vivo progression of liver cancer. Given that hepatocarcinoma is among the most prevalent and lethal malignancies and there is no effective treatment to date, our study may contribute to the potential drug development for liver cancer.

Efficacy Evaluation of Tissue Inhibitor of Metalloproteinases-2 and Endostatin on Angiogenesis (Tissue Inhibitor of Metalloproteinases-2와 Endostatin의 혈관신생 제어 효능 평가)

  • Kim, Soo-Hyeon;Cho, Young-Rak;Yoon, Hyun-Jae;Ko, Hee-Young;Kim, Pyeung-Hyeun;Seo, Dong-Wan
    • YAKHAK HOEJI
    • /
    • v.54 no.6
    • /
    • pp.488-493
    • /
    • 2010
  • Therapeutic manipulation of angiogenesis, the formation of new vascular sprouts from existing capillaries, is one of the promising strategies for treatment of human diseases such as cancer, arthritis, and cardiovascular disorder. In the present study, we examined the effects and molecular mechanism of tissue inhibitor of metalloproteinases-2 (TIMP-2) and endostatin on fibroblast growth factor-2 (FGF-2)-stimulated endothelial cell proliferation, migration and adhesion in vitro, and angiogenesis in vivo. TIMP-2 and endostatin showed potent anti-angiogenic activity in vitro and in vivo. These effects appear to be mediated through different angiogenic signaling pathways. Collectively, our findings demonstrate that TIMP-2 and endostatin strongly inhibit FGF-2-induced angiogenic responses, and the establishment of fast and reproducible evaluation system in vitro and in vivo for the development of anti-angiogenic biomaterials and therapeutics.

Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila

  • Hong, Young Gi;Roh, Seyun;Paik, Donggi;Jeong, Sangyun
    • Molecules and Cells
    • /
    • v.40 no.1
    • /
    • pp.73-81
    • /
    • 2017
  • The ${\gamma}$-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ${\beta}$-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the ${\gamma}$-secretase catalytic component, presenilin, which lead to increased amyloid ${\beta}$-peptide production, are responsible for early-onset familial Alzheimer's disease. ${\beta}$-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of ${\gamma}$-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate ${\gamma}$-secretase activity and/or APPL metabolism.

Comet Assay to Detect the DNA Breakages in the Tissue of the Purple Clam ( Saxidomus purpuratus) and the Blood of the Olive Flounder (Paralichthys olivaceus) Exposed to 5 PAHs

  • Lee, Taek-Kyun;Kim, So-Jung;Park, Eun-Seok;Rora Oh;Yun, Hee-Young;Man Chang
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2003.10a
    • /
    • pp.159-159
    • /
    • 2003
  • Comet assay is a potential monitoring tool because DNA strand breakage may be produced by a wide range of agents. The comet assay, also called the single-cell gell electrophoresis (SCGE) assay, is rapid and sensitive method for the detection of DNA damage in cells. This study was performed for the identification of DNA damage in the cells from flounders and clams exposed to PAHs. As a control experiments, flounder and clam cells were exposed to $H_2O$$_2$. The cells exposed to $H_2O$$_2$ were displayed a typical nuclei movement DNA damage of cells were significantly increased when the isolated cells from the blood of flounders and the tissue of clams were in vitro exposed to the different concentrations (5, 10, 50, 100 ppb) of five kinds of PAHs (benzo[a]pyrene, pyrene, fluoranthene, anthrancene, and phenanthrene). For the in vivo test, flounders and clams were exposed to the different concentrations of BaP for 4 days. The results showed that DNA strand breakage was effected by the concentration of BaP and the duration of exposure. In high concentration of BaP, the mean tail lengths of nuclei was longer than it In low concentration, while the mean size of head DNA decreased. In this research, both in vitro and in vivo genotoxicity of PAHs could be biomonitored by the comet assay. Especially, clams and flounders seem to be useful as materials for monitoring genotoxic damage by comet assay.

  • PDF

Effects of Trichostatin A on In vitro Development of Porcine Embryos Derived from Somatic Cell Nuclear Transfer

  • Jeong, Yeon Ik;Park, Chi Hun;Kim, Huen Suk;Jeong, Yeon Woo;Lee, Jong Yun;Park, Sun Woo;Lee, Se Yeong;Hyun, Sang Hwan;Kim, Yeun Wook;Shin, Taeyoung;Hwang, Woo Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.12
    • /
    • pp.1680-1688
    • /
    • 2013
  • Many different approaches have been developed to improve the efficiency of animal cloning by somatic cell nuclear transfer (SCNT), one of which is to modify histone acetylation levels using histone deacetylase inhibitors (HDACi) such as trichostatin A (TSA). In the present study, we examined the effect of TSA on in vitro development of porcine embryos derived from SCNT. We found that TSA treatment (50 nM) for 24 h following oocyte activation improved blastocyst formation rates (to 22.0%) compared with 8.9% in the non-treatment group and total cell number of the blastocysts for determining embryo quality also increased significantly ($88.9{\rightarrow}114.4$). Changes in histone acetylation levels as a result of TSA treatment were examined using indirect immunofluorescence and confocal microscopy scanning. Results showed that the histone acetylation level in TSA-treated embryos was higher than that in controls at both acetylated histone H3 lysine 9 (AcH3K9) and acetylated histone H4 lysine 12 (AcH4K12). Next, we compared the expression patterns of seven genes (OCT4, ID1; the pluripotent genes, H19, NNAT, PEG1; the imprinting genes, cytokeratin 8 and 18; the trophoblast marker genes). The SCNT blastocysts both with and without TSA treatment showed lower levels of OCT4, ID1, cytokeratin 8 and 18 than those of the in vivo blastocysts. In the case of the imprinting genes H19 and NNAT, except PEG1, the SCNT blastocysts both with and without TSA treatment showed higher levels than those of the in vivo blastocysts. Although the gene expression patterns between cloned blastocysts and their in vivo counterparts were different regardless of TSA treatment, it appears that several genes in NT blastocysts after TSA treatment showed a slight tendency toward expression patterns of in vivo blastocysts. Our results suggest that TSA treatment may improve preimplantation porcine embryo development following SCNT.

Functional Genomics Approach Using Mice

  • Sung, Young-Hoon;Song, Jae-Whan;Lee, Han-Woong
    • BMB Reports
    • /
    • v.37 no.1
    • /
    • pp.122-132
    • /
    • 2004
  • The rapid development and characterization of the mouse genome sequence, coupled with comparative sequence analysis of human, has been paralleled by a reinforced enthusiasm for mouse functional genomics. The way to uncover the in vivo function of genes is to analyze the phenotypes of the mutant animals. From this standpoint, the mouse is a suitable and valuable model organism in the studies of functional genomics. Therefore, there have been enormous efforts to enrich the list of the mutant mice. Such a trend emphasizes the random mutagenesis, including ENU mutagenesis and gene-trap mutagenesis, to obtain a large stock of mutant mice. However, since various mutant alleles are needed to precisely characterize the role of a gene in vivo, mutations should be designed. The simplicity and utility of transgenic technology can satisfy this demand. The combination of RNA interference with transgenic technology will provide more opportunities for researchers. Nevertheless, gene targeting can solely define the in vivo function of a gene without a doubt. Thus, transgenesis and gene targeting will be the major strategies in the field of functional genomics.

In Vitro and In Vivo Inhibitory Effects of Gaseous Chlorine Dioxide Against Diaporthe batatas Isolated from Stored Sweetpotato

  • Lee, Ye Ji;Jeong, Jin-Ju;Jin, Hyunjung;Kim, Wook;Yu, Gyeong-Dan;Kim, Ki Deok
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.77-83
    • /
    • 2019
  • Chlorine dioxide ($ClO_2$) can be used as an alternative disinfectant for controlling fungal contamination during postharvest storage. In this study, we tested the in vitro and in vivo inhibitory effects of gaseous $ClO_2$ against Diaporthe batatas SP-d1, the causal agent of sweetpotato dry rot. In in vitro tests, spore suspensions of SP-d1 spread on acidified potato dextrose agar were treated with various $ClO_2$ concentrations (1-20 ppm) for 0-60 min. Fungal growth was significantly inhibited at 1 ppm of $ClO_2$ treatment for 30 min, and completely inhibited at 20 ppm. In in vivo tests, spore suspensions were drop-inoculated onto sweetpotato slices, followed by $ClO_2$ treatment with different concentrations and durations. Lesion diameters were not significantly different between the tested $ClO_2$ concentrations; however, lesion diameters significantly decreased upon increasing the exposure time. Similarly, fungal populations decreased at the tested $ClO_2$ concentrations over time. However, the sliced tissue itself hardened after 60-min $ClO_2$ treatments, especially at 20 ppm of $ClO_2$. When sweetpotato roots were dip-inoculated in spore suspensions for 10 min prior to treatment with 20 and 40 ppm of $ClO_2$ for 0-60 min, fungal populations decreased with increasing $ClO_2$ concentrations. Taken together, these results showed that gaseous $ClO_2$ could significantly inhibit D. batatas growth and dry rot development in sweetpotato. Overall, gaseous $ClO_2$ could be used to control this fungal disease during the postharvest storage of sweetpotato.