• Title/Summary/Keyword: In vivo detection

Search Result 184, Processing Time 0.023 seconds

A study on the implementation simulation and system for 2-D doppler system using second-order sampling (2차 샘플링을 이용한 2-D 도플러 시스템의 시뮬레이션과 시스템구현에 관한 연구)

  • 임춘성;임용곤
    • Journal of Biomedical Engineering Research
    • /
    • v.11 no.1
    • /
    • pp.147-156
    • /
    • 1990
  • A two-dimensional pulsed doppler system for ultrasonic blood velocity doppler signals is studied and implemented. The second-order sampling method and serial data processing procedures are utillized in the sys- tem, which eliminates the untuning problems at phase channels in the quadrature detection method as well as in the channels of parallel data processing. rho digital signal processor used in this system allows a hardware savings and flexible design options. The efficiency of the various mean frequency estimators in the second-order sampling system is examined by computer simulation as a function of the intersequence sample delay time. The temporal delay for the quadrature component is changed from $1/(4f_o){\;}to{\;}3/(4f_o){\;}and{\;}5/(4f_o)$ where to is the center frequency of the transducer, It is found that autocorrelator is the optimum frequency estimator for the second-order sampling: with !he intersequence sample delay of $1/(4f_o){\;}to{\;}3/(4f_o){\;}and{\;}5/(4f_o)$. The qualitative variation and information proportional to blood velocity in the vessel system are obtained in the VIVO experiments.

  • PDF

Large Scale Directed Assembly of SWNTs and Nanoparticles for Electronics and Biotechnology

  • Busnaina, Ahmed;Smith, W.L.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.9-9
    • /
    • 2011
  • The transfer of nano-science accomplishments into technology is severely hindered by a lack of understanding of barriers to nanoscale manufacturing. The NSF Center for High-rate Nanomanufacturing (CHN) is developing tools and processes to conduct fast massive directed assembly of nanoscale elements by controlling the forces required to assemble, detach, and transfer nanoelements at high rates and over large areas. The center has developed templates with nanofeatures to direct the assembly of carbon nanotubes and nanoparticles (down to 10 nm) into nanoscale trenches in a short time (in seconds) and over a large area (measured in inches). The center has demonstrated that nanotemplates can be used to pattern conducting polymers and that the patterned polymer can be transferred onto a second polymer substrate. Recently, a fast and highly scalable process for fabricating interconnects from CMOS and other types of interconnects has been developed using metallic nanoparticles. The particles are precisely assembled into the vias from the suspension and then fused in a room temperature process creating nanoscale interconnect. The center has many applications where the technology has been demonstrated. For example, the nonvolatile memory switches using (SWNTs) or molecules assembled on a wafer level. A new biosensor chip (0.02 $mm^2$) capable of detecting multiple biomarkers simultaneously and can be in vitro and in vivo with a detection limit that's 200 times lower than current technology. The center has developed the fundamental science and engineering platform necessary to manufacture a wide array of applications ranging from electronics, energy, and materials to biotechnology.

  • PDF

Toxic Effect of Cadmium Assay in Contaminated Soil Earthworm Cell Using Modified Sensor

  • Ly, Suw Young;Kyung, Lee;Kim, Chae Hwa;Seo, Roma;Lee, Soo Youn;Kim, Lina;Chae, Su min;Choi, Sung Wook;Kim, Ji Yoon
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.213-217
    • /
    • 2015
  • A voltammetric toxic metal of cadmium detection was studied using a fluorine doped graphite pencil electrode (FPE) in a seawater electrolyte. In this study, square wave (SW) stripping and chronoamerometry were used for determination of Cd(II) in seawater. Affordable pencils and an auxiliary electrode were used as reference. All experiments in this study could be performed at reasonable cost by using graphite pencil. The application was performed on the tissue of contaminated soil earthworm. The results show that the method can be applicable for vegetables and in vivo fluid or medicinal diagnosis.

Quantitative Assessment of Xenoestrogenic Environmental Pollutants using E-SCREEN Assay (E-SCREEN Assay를 이용한 내분비계 장애물질의 정량적 평가)

  • 오승민;이상기;정규혁
    • YAKHAK HOEJI
    • /
    • v.44 no.5
    • /
    • pp.416-423
    • /
    • 2000
  • There is a growing concern that a wide variety of chemicals released into the environment can disrupt the endocrine system of fish, wildlife and humans. Endocrine disrupting chemicals (EDCs) include pesticides such as DDT lindane and atrazine, the food packaging chemicals, phthalates and bisphenol A, alkylphenol ethoxylate detergents and the chemical industry by-products, dioxins. Xenoestrogens in the environment have been argued about health risk, because of estrogen mimetic chemicals are exposed only small amounts to human. A number of in vivo and in vitro assays are now in use to assess the activity of xenoestrogens in the environment. A human breast cancer cell line (MCF-7) was used to develop in vitro screening assay for the detection of xenoestrogenic environmental pollutants. The E-SCREEN (MCF7-BUS) assay is proposed as a reliable, easy and rapid-to-perform method. To optimize and validate this method before it can be used routinely, several phenol compounds and pesticides suspected to be estrogenic were tested using I-SCREEN assay. The results showed that this method is a valuable tool for screening potential estrogen-mimicking environmental pollutants and quantitative determination of estrogeniciy.

  • PDF

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Change in Levels of Endogenous Hormone and Detection of Adventitious Bud-Related Protein during Culture of Hybrid Poplar Explants

  • Song, Jae-Jin
    • Journal of Plant Biology
    • /
    • v.38 no.2
    • /
    • pp.143-151
    • /
    • 1995
  • Addition of plant growth hormones [0.01 mg/L NAA and 0.2mg/L benzyladenine (BA)] to a woody plant medium stimulated the adventitious bud formation of poplar explants during culture. Endogenous IAA content increased rapidly at the initial culture stage and then decreased, being followed by rapid increment again at the late culture. But the content of trans-zeatin riboside (t-ZR) increased continuously during the culture. Cytoplasmic soluble proteins were analyzed by one- and two-dimensional SDS-PAGE. Increased amount of 40 kD band was detected by one-dimensional electrophoresis using Coomassie Blue staining during the culture and two distinctive proteins whose mol wt is 40,000 were detected by two-dimensional electrophoresis using autoradiography and these proteins were synthesized continuously prior to the adventitious bud formation. When the midvein segments were transferred to the actinomycin D-containing medium, the spots of adventitious bud-related proteins(ABRPs) did not disappeared but weakened in intensity. So, it is concluded that genes coding for the ABRPs are regulated to some degree at the transcriptional level. Also, they were not observed in BA-free medium, suggesting that these proteins be regulated by cytokinin, which made then possible to form the adventitious bud.

  • PDF

Anti-Inflammatory Effects of Rice Bran Ethanol Extract in Murine Macrophage RAW 264.7 Cells (미강에탄올추출물의 RAW264.7 세포에서 항염증효과)

  • Park, Jeong-Suk;Kim, Mi-Hye
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.456-461
    • /
    • 2011
  • The aim of the present study is to investigate the anti-inflammatory effect of a Rice Bran Ethanol Extract (RBE). Inflammation, such as a bacterial infection in vivo metabolites, such as external stimuli or internal stimuli to the defense mechanisms of the biological tissue a variety of intracellular regulatory factors deulin inflammatory TNF-${\alpha}$, IL-$1{\beta}$, IL-6, IL-8, such as proinflammatory cytokines, prostagrandin, lysosomal enzyme, free radicals are involved in a variety of mediators. The present study was designed to determine the effect of the RBE on pro-inflammatory factors such as NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 in lipopolysaccharide (LPS) - stimulated RAW264.7 macrophages cells. The cell toxicity was determined by MTS assay. To evaluate of anti-inflammatory effect of RBE, amount of NO was measured using the NO detection kit and the iNOS expression was measured by reverse transcriptase polymerase chain reaction (RT-PCR). And proinflammatory cytokines were measured by ELISA kit. As a result, the RBE reduced NO, iNOS expression and TNF-${\alpha}$, IL-$1{\beta}$, IL-6 production without cytotoxicity. Our results suggest that the RBE may have an anti-inflammatory property through suppressing inflammatory mediator productions and appears to be useful as an anti-inflammatory material.

Daily Amperometric Monitoring of Immunoglobulin E in a Mouse Whole Blood: Model of Ovalbumin Induced Asthma

  • Lee, Ju Kyung;Yoon, Sung-hoon;Kim, Sang Hee
    • Journal of the Korean Electrochemical Society
    • /
    • v.25 no.1
    • /
    • pp.13-21
    • /
    • 2022
  • There is an increasing interest in monitoring of specific biomarker for determining progression of a disease or efficacy of a treatment. Conventional method for quantification of specific biomarkers as enzyme linked immunosorbent assay (ELISA) has high material costs, long incubation periods, requires large volume of samples and involves special instruments, which necessitates clinical samples to be sent to a lab. This paper reports on the development of an electrochemical biosensor to measure total immunoglobulin E (IgE), a marker of asthma disease that varies with age, gender, and disease in concentrations from 0.3-1000 ng/mL with consuming 20 µL volume of whole blood sample. The sensor provides rapid, accurate, easy, point-of-care measurement of IgE, also, sequential monitoring of total IgE with ovalbumin (OVA) induced mice is another application of sensor. Taken together, these results provide an alternative way for detection of biomarkers in whole blood with low volumes and long-term ex-vivo assessments for understanding the progression of a disease.

PET Radiopharmaceuticals for Tumor Imaging (종양 영상을 위한 PET 방사성의약품)

  • Choe, Yearn-Seong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.1
    • /
    • pp.8-18
    • /
    • 2002
  • Early and accurate diagnosis of tumors using positron omission tomography (PET) has been the focus of considerable interest due to its high metastasis and mortality rates at late detection. PET radiopharmaceuticals-which exhibit a high tumor-to-background uptake ratio, and appropriate metabolic characteristics, and pharmacokinetics-are attractive tools for tumor imaging. Tumor imaging by these radiopharmaceuticals are based on metabolic and receptor imaging. The former is based on accelerated metabolism in tumor tissue compared to normal tissue and the rate roughly corresponding to the rate of growth of tumors. Radiopharmaceuticals for this purpose include radiolabeled sugars, amino acids, and nucleosides which detect increased glucose utilization, protein synthesis, and DNA synthesis, respectively. Tumor receptor imaging is based on the proliferation of tumor cells regulated by many hormones and growth factors, which bind to the corresponding receptors and exhibit the biological responses Radiopharmaceuticals used to image the tumor receptor systems may be ligands for the specific receptors and antibodies for the growth factor receptors. Some antitumor agents have been labeled with radionuclides and used to study in vivo biodistribution and pharmacokinetics in humans. This overview describes typical PET radiopharmaceuticals used for tumor imaging based on their uptake mechanisms.

Imaging and analysis of genetically encoded calcium indicators linking neural circuits and behaviors

  • Oh, Jihae;Lee, Chiwoo;Kaang, Bong-Kiun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.23 no.4
    • /
    • pp.237-249
    • /
    • 2019
  • Confirming the direct link between neural circuit activity and animal behavior has been a principal aim of neuroscience. The genetically encoded calcium indicator (GECI), which binds to calcium ions and emits fluorescence visualizing intracellular calcium concentration, enables detection of in vivo neuronal firing activity. Various GECIs have been developed and can be chosen for diverse purposes. These GECI-based signals can be acquired by several tools including two-photon microscopy and microendoscopy for precise or wide imaging at cellular to synaptic levels. In addition, the images from GECI signals can be analyzed with open source codes including constrained non-negative matrix factorization for endoscopy data (CNMF_E) and miniscope 1-photon-based calcium imaging signal extraction pipeline (MIN1PIPE), and considering parameters of the imaged brain regions (e.g., diameter or shape of soma or the resolution of recorded images), the real-time activity of each cell can be acquired and linked with animal behaviors. As a result, GECI signal analysis can be a powerful tool for revealing the functions of neuronal circuits related to specific behaviors.