• Title/Summary/Keyword: In vivo Selection

Search Result 88, Processing Time 0.021 seconds

Selection and Characterization of Tomato Plants for Osmotic Stress Tolerance Derived from a Gamma Ray Irradiation (감마선 돌연변이원에 의한 Osmotic 스트레스 저항성 토마토 계통 선발 및 특성)

  • Kang, Kwon Kyoo;Jung, Yu Jin
    • Journal of Radiation Industry
    • /
    • v.4 no.3
    • /
    • pp.247-252
    • /
    • 2010
  • The present study has been performed to select the osmotic tolerant lines using polyethylene glycol (PEG 6000) through an in vitro and in vivo mutagensis with a gamma-ray. During the screening, we selected three mutant lines that seemed to confer elevated osmotic tolerance in high concentrations of PEG 6000. Fruits of these mutants (Os-HK101, Os-HK102 and Os-HK103) were increased to sugar concentration, L-glutamine acid, vitamin C content and lycopine content than those of the wild type. Also the chlorophyll contents were few decreased more in the three mutant lines than the WT plants. Our results suggest that the Os-HK101 is characterized as osmotic stress tolerance considering the sugar concentration and lycopine content. It is expected that the result of this study can be used for breeding more competitive species with respect to contents in sugar or functional chemicals from the selected osmotic resistant lines.

Establishment of a Selection System for the Site-Specific Incorporation of Unnatural Amino Acids into Protein (비천연 아미노산의 위치특이적 단백질 삽입을 위한 Amino Acyl-tRNA Synthetase 선별시스템 개발)

  • Edan, Dawood Salim;Choi, Inkyung;Park, Jungchan
    • Korean Journal of Microbiology
    • /
    • v.50 no.1
    • /
    • pp.1-7
    • /
    • 2014
  • Site-specific incorporation of unnatural amino acids (SSIUA) into protein can be achieved in vivo by coexpression of an orthogonal pair of suppressor tRNA and engineered aminoacyl-tRNA synthetase (ARS) that specifically ligates an unnatural amino acid to the suppressor tRNA. As a step to develop the SSIUA technique in Escherichia coli, here we established a new 2-step screening system that can be used for selecting an ARS variant(s) that ligates an unnatural amino acid to a suppressor tRNA. A positive selection system consists of chloramphenicol acetyl transferase gene containing an amber mutation at the $27^{th}$ residue, and efficiently concentrated amber suppressible ARS with a maximum enrichment factor of $9.0{\times}10^5$. On the other hand, a negative selection system was constructed by adding multiple amber codons in front of a lethal gene encoding the control of cell death B toxin (ccdB) which acts as an inhibitory protein of bacterial topoisomerase II. Amber suppression of ccdB by an orthogonal pair of Saccharomyces cerevisiae tyrosyl-tRNA synthetase (TyrRS) and an amber suppressor tRNA significantly inhibits bacterial growth. This selection system was also able to efficiently remove amber suppressible ARS which could ligate natural amino acids to the suppressor tRNA. Thus, sequential combination of these two selection systems might be able to function as a powerful tool for selecting an ARS variant that specifically ligates an unnatural amino acid to the suppressor tRNA from an ARS mutant pool.

Selection of Dental Cements (치과용 합착제의 선택)

  • Sung, Moo-Gyung
    • Journal of the Korean Academy of Esthetic Dentistry
    • /
    • v.8 no.1
    • /
    • pp.76-82
    • /
    • 1999
  • Zinc phosphate cement has long been the material of choice for permanent luting of cast restorations, and through many years of use has been considered effective to retain castings. However, cast restorations cemented with this material have been susceptible to secondary caries. Glass ionomer luting agents become available in the late 1970s. These material s, through release of fluoride, show considerable promise as a means of reducing secondary caries. Other favorable traits include significantly less disintegration in vivo than zinc phosphate cements, a film thickness comparable to that of zinc phosphate cement, and adhesion to tooth structure. Compomer materials were created in 1993 as a filling material for deciduous teeth, cervical lesions, and class III cavities. In the meantime, compomer have been developed as chemical hardening cements for cast gold restorations. The aim of this paper is to review the articles on luting cements to help the choice of dental cements.

  • PDF

토양길항세균 Bacillus sp. KL-3의 대사산물을 이용한 벼도열병균 Pyricularia oryzae의 생물학적방제

  • 김규영;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.4
    • /
    • pp.396-402
    • /
    • 1997
  • Biocontrol of plant pathogens provides an alternative means of reducing the incidence of plant diseases without the negative aspects of chemical pesticides. Nowdays, as the resistant fungi about the chemical fungicides have revealed and the concern of environment has increased, the biological control of phytopathogenic fungi by the antagonistic microorganisms is very much indispensable. For the selection of strong antagonistic bacterium for biological control agent of rice leafblast and cucumber gray mold rot, the antifungal strain KL-3 strain was selected among 120 strains isolated from the rhizosphere soils. And the strain was identified to be a species of Bacillus subtilis or closely related strain. In several biochemical and in vitro antibiosis tests, antifungal substances of Bacillus sp. KL-3 were presumed heat stable, micromolecular antibiotic substances. In vivo test and vinyl house field test, the antifungal substances of Bacillus sp. KL-3 represented excellent biocontrol ability aganist Alternaria mali, Phyricularia oryzae, and Alternaria kikuchiana as well as broad spectrum of other fungi. In particular, Bacillus sp. KL-3 strain showed more predominant activity than some chemical fungicides against fungi shown to resist chemcal fungicides.

  • PDF

Current Methodologies for Membrane Permeability Assessment

  • Shin, Beom-Soo;Youn, Yu-Seok;Jeong, Seong-Hoon;Park, Eun-Seok;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.40 no.spc
    • /
    • pp.19-31
    • /
    • 2010
  • Orally administrated drugs permeate the biological membrane by various transport mechanisms. The oral absorption potential is closely related to the physicochemical properties of the drug and interaction with the physiological factors surrounding the site of absorption. Assessment of the drug membrane permeability is an integral part of the early stage drug developmental process. Appropriate selection of the permeability screening method at the right stage of drug development process is important in achieving successful developmental outcomes. This review aims at introducing currently available in vitro and in vivo screening methods for the membrane permeability assessment.

Biomedical Application of Gene Editing (유전자 교정 기술의 생의학적 응용)

  • Ju-Chan, Park;Hyeon-Ki, Jang
    • Journal of Industrial Technology
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2022
  • The CRISPR system has revolutionized gene editing field. Cas9-mediated gene editing such as Indel induction or HDR enable targeted gene disruption or precise correction of mutation. Moreover, CRISPR-based new editing tools have been developed such as base editors. In this review, we focus on gene editing in human pluripotent stem cells, which is principal technique for gene correction therapy and disease modeling. Pluripotent stem cell-specific drug YM155 enabled selection of target gene-edited pluripotent stem cells. Also, we discussed base editing for treatment of congenital retina disease. Adenine base editor delivery as RNP form provide an approach for genetic disease treatment with safe and precise in vivo gene correction.

Selection and Antifungal Activity of Antagonistic Bacterium Pseudomonas sp. 2112 against Red-Pepper Rotting Phytophthora capsici (생물방제균 Pseduomonas fluorescens 2112의 선발과 고추역병균에 대한 항진균성 길항작용)

  • 이은탁;김상달
    • Microbiology and Biotechnology Letters
    • /
    • v.28 no.6
    • /
    • pp.334-340
    • /
    • 2000
  • In order to select multifunctional powerful antagonistic biocontrol agent against red-pepper rotting fungi Phytophthora capsici, we isolated an indigenous antagonistic bacterium which produces antifungal substances and siderophores from a local soil of Kyongju, Korea. The isolated strain was identified as Pseudomonas fluorescens biotype F. The antibiotic produced from P. fluorescens 2112 inhibited hyphae growth and the zoospore germination of Phytophthora capsici. The favorable carbon, nitrogen source and salts for the production of antibiotic from P. fluorescens 2112 were glycerol, beef extract and LiCi at 1.0%, 0.5% and 5 mM, respectively. And antagonistic activity of P. fluorescens 2112 was confirmed against P. capsici in vivo.

  • PDF

Selection of iPSCs without mtDNA deletion for autologous cell therapy in a patient with Pearson syndrome

  • Yeonmi Lee;Jongsuk Han;Sae-Byeok Hwang;Soon-Suk Kang;Hyeoung-Bin Son;Chaeyeon Jin;Jae Eun Kim;Beom Hee Lee;Eunju Kang
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.463-468
    • /
    • 2023
  • Screening for genetic defects in the cells should be examined for clinical application. The Pearson syndrome (PS) patient harbored nuclear mutations in the POLG and SSBP1 genes, which could induce systemic large-scale mitochondrial genome (mtDNA) deletion. We investigated iPSCs with mtDNA deletions in PS patient and whether deletion levels could be maintained during differentiation. The iPSC clones derived from skin fibroblasts (9% deletion) and blood mononuclear cells (24% deletion) were measured for mtDNA deletion levels. Of the 13 skin-derived iPSC clones, only 3 were found to be free of mtDNA deletions, whereas all blood-derived iPSC clones were found to be free of deletions. The iPSC clones with (27%) and without mtDNA deletion (0%) were selected and performed in vitro and in vivo differentiation, such as embryonic body (EB) and teratoma formation. After differentiation, the level of deletion was retained or increased in EBs (24%) or teratoma (45%) from deletion iPSC clone, while, the absence of deletions showed in all EBs and teratomas from deletion-free iPSC clones. These results demonstrated that non-deletion in iPSCs was maintained during in vitro and in vivo differentiation, even in the presence of nuclear mutations, suggesting that deletion-free iPSC clones could be candidates for autologous cell therapy in patients.

Trabecular bone Thickness Measurement of Rat Femurs using Zoom-in Micro-tomography and 3D Fuzzy Distance Transform (Zoom-in Micro-tomography와 3차원 Fuzzy Distance Transform을 이용한 쥐 대퇴부의 해면골 두께 측정)

  • Park, Jeong-Jin;Cho, Min-Hyoung;Lee, Soo-Yeol
    • Journal of Biomedical Engineering Research
    • /
    • v.27 no.4
    • /
    • pp.189-196
    • /
    • 2006
  • Micro computed tomography (micro-CT) has been used for in vivo animal study owing to its noninvasive and high spatial resolution capability. However, the sizes of existing detectors for micro-CT systems are too small to obtain whole-body images of a small animal object with $\sim$10 micron resolution and a part of its bones or other organs should be extracted. So, we have introduced the zoom-in micro-tomography technique which can obtain high-resolution images of a local region of an live animal object without extracting samples. In order to verify our zoom-in technique, we performed in vivo animal bone study. We prepared some SD (Sprague-Dawley) rats for making osteoporosis models. They were divided into control and ovariectomized groups. Again, the ovariectomized group is divided into two groups fed with normal food and with calcium-free food. And we took 3D tomographic images of their femurs with 20 micron resolution using our zoom-in tomography technique and observed the bone changes for 12 weeks. We selected ROI (region of interest) of a femur image and applied 2D FDT (fuzzy distance transform) to measure the trabecular bone thickness. The measured results showed obvious bone changes and big differences between control and ovariectomized groups. However, we found that the reliability of the measurement depended on the selection of ROI in a bone image for thickness calculation. So, we extended the method to 3D FDT technique. We selected 3D VOI (volume of interest) in the obtained 3D tomographic images and applied 3D FDT algorithm. The results showed that the 3D technique could give more accurate and reliable measurement.

Autocrine mechanism for viability enhancement of BAL eosinophils after segmental antigen challenge in allergic asthmatics.

  • Cho, Seung-Kil;Stephen P. Peters;Kim, Chang-Jong
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1996.04a
    • /
    • pp.254-254
    • /
    • 1996
  • Eosinophils are known to be important effector cells in pathogenesis of asthma. The elucidation of mechanism by which eosinophil survival is regulated in vivo at sites of inflammation is critical tn our understanding of asthma pathogenesis. The maintenance of these cells at site of inflammation depends upon tile balance between its tendency to undergo apoptosis and tile local eosinophil-viability enhancing activity, Qualitative and quantative phenotypic differences have been observed between bronchoalveolar lavage (BAL) and peripheral blood (PB) eosinophils (EOS). We hypothesize that BAL EOS Possess altered functional feature compared to PB EOS. BAL and PB EOS were obtained from ragweed allergic asthmatics after segmental antigen challenge (SAC) at 24 hour or one week, and purified over percoll and CDl6 negative selection. Cells were cultured in duplicate in RPMI, 15% FCS and 1% penicillin/streptomycin without exogenous cytokines. Eosinophil purity and viability was >92%. BAL. EOS viability was 69${\pm}$4.4% versus 39${\pm}$1.6% for PB EOS (p<0.005) at 48 hour time point, and this difference was maintained through day 5 (32${\pm}$7.6% vs. 3.0${\pm}$ 1.4%, p<0.05), Among BAL EOS, those harvested one week after SAC appeared to have an prolonged survival compared to those harvested at 24 hour. Coculture of BAL and PB EOS resulted in significant viability enhancement than expecteed. Direct neutralization of GM-CSF activity, not IL-3 and EL-5, markedly decreased tile survival of BAL EOS in culture, and abrogated tile viability enhancing activity of their culture supernatants in a dose dependent manner. We conclude that BAL EOS activated in vivo possess enhanced viability compared to PB EOS. Mixing and neutralization experiments suggest a role for autocrine production of GM-CSF.

  • PDF