Browse > Article
http://dx.doi.org/10.4333/KPS.2010.40.S.019

Current Methodologies for Membrane Permeability Assessment  

Shin, Beom-Soo (College of Pharmacy, Catholic University of Daegu)
Youn, Yu-Seok (College of Pharmacy, Pusan National University)
Jeong, Seong-Hoon (College of Pharmacy, Pusan National University)
Park, Eun-Seok (College of Pharmacy, Sungkyunkwan University)
Lee, Mann-Hyung (College of Pharmacy, Catholic University of Daegu)
Yoo, Sun-Dong (College of Pharmacy, Sungkyunkwan University)
Publication Information
Journal of Pharmaceutical Investigation / v.40, no.spc, 2010 , pp. 19-31 More about this Journal
Abstract
Orally administrated drugs permeate the biological membrane by various transport mechanisms. The oral absorption potential is closely related to the physicochemical properties of the drug and interaction with the physiological factors surrounding the site of absorption. Assessment of the drug membrane permeability is an integral part of the early stage drug developmental process. Appropriate selection of the permeability screening method at the right stage of drug development process is important in achieving successful developmental outcomes. This review aims at introducing currently available in vitro and in vivo screening methods for the membrane permeability assessment.
Keywords
Membrane permeability; absorption; Caco-2; PAMPA; intestinal perfusion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adachi, Y., Suzuki, H., Sugiyama, Y., 2001. Comparative studies on in vitro methods for evaluating in vivo function of MDR1 P-glycoprotein. Pharm. Res. 18, 1660-1668.   DOI
2 Amidon, A., Ho, N., French, A., Higuchi, W., 1981. Predicted absorption rates with simultaneous bulk fluid flow in the intestinal tract. J. Theor. Biol. 89, 195-210.   DOI
3 Amidon, G.L., Lennernas, H., Shah, V.P., Crison, J., 1995. Theoretical considerations in the correlation of in vitro drug product dissolution and in vivo bioavailability: a basis for a biopharmaceutics drug classification. Pharm. Res. 12, 413-420.   DOI
4 Artursson, P., 1991. Cell cultures as models for drug absorption across the intestinal mucosa. Crit. Rev. Ther. Drug Carrier Syst. 8, 305-330.
5 Artursson, P., Karlsson, J., 1991. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880-885.   DOI
6 Artursson, P., Lindmark, T., Davis, S.S., Illum, L., 1994. Effect of chitosan on the permeability of monolayers of intestinal epithelial cells (Caco-2). Pharm. Res. 11, 1358-1361.   DOI
7 Schurgers, N., DeBlaey, C., 1984. Effect of pH, buffer concentration and buffer composition on the absorption of theophylline from the small intestine of the rat. Int. J. Pharm. 19, 283-295.   DOI
8 Shu, Y., Bello, C.L., Mangravite, L.M., Feng, B., Giacomini, K.M., 2001. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in Madin-Darby Canine Kidney cells. J. Pharmacol. Exp. Ther. 299, 392-398.
9 Silverman, L., Campbell, R., Broach, J.R., 1998 New assay technologies for high-throughput screening. Curr. Opin. Chem. Biol. 2, 397-403.   DOI
10 Sinko, P. J., Hu, P., Waclawski, A. P., Patel, N. R., 1995. Oral absorption of anti-AIDS nucleoside analogues: 1. Intestinal transport of didanosine in rat and rabbit preparations. J. Pharm. Sci. 84, 959-965.   DOI
11 Murer, H., Kinne, R., 1980. The use of isolated vesicles to study epithelial transport processes. J. Membr. Biol. 55, 81-95.   DOI
12 Nicklin, P.L., Irwin, W.J., Hassan, I.F., MacKay, M., 1992. Proline uptake by monolayers of human intestinal absorptive (Caco-2) cells in vitro. Biochim. Biophys. Acta. 1104, 283-292.   DOI
13 Ong, S., Liu, H., Pidgeon, C., 1996. Immobilized-artificial-membrane chromatography: measurements of membrane partition coefficient and predicting drug membrane permeability. J. Chromatogr. A. 728, 113-128.   DOI
14 Pento, I.T., Mousissian, G.K., 1988. Time-dependent deterioration of active transport in duodenal segments of rat intestine. J. Pharmacol. Methods 20, 9-14.   DOI
15 Pidgeon, C., Ong, S., Liu, H., Qiu, X., Pidgeon, M., Dantzig, A.H., Munroe, J., Hornback, W.J., Kasher, J.S., Glunz, L., Szczerba, T., 1995. IAM chromatography: an in vitro screen for predicting drug membrane permeability. J. Med. Chem. 38, 590-594.   DOI
16 Kramer, S.D., 1999. Absorption prediction from physicochemical parameters. Pharm. Sci. Technolo. Today 2, 373-380.   DOI
17 Pinto, M., Robin-Le'on, S., Appay, M.D., Kedinger, M., Triadou, N., Dussaulx, E., Lacroix, B., Simon-Assman, P., Haffen, K., Fogh, J., Zweibaum, A., 1983. Enterocyte-like differentiation and polarization of the human colon carcinoma cell line Caco-2 in culture. Biol. Cell 47, 323-330.
18 Pruesaritanont, T., Gorham, L.M., Hochman, J.H., Tran, L.O., Vyas, K.P., 1996. Comparative studies of drugmetabolising enzymes in dog, monkey, and human small intestine, and in Caco-2 cells. Drug Metab. Dispos. 24, 634-642.
19 Raevsky, O.A., Fetisov, V., Trepalina, E., McFarland, J., Schaper, K.J., 2000. Quantitative Estimation of Drug Absorption in Humans for Passively Transported Compounds on the Basis of Their Physico-chemical Parameters. Quant. Struct. -Act. Relat. 19, 366-374   DOI
20 Lennernas, H., Ahrenstedt, O., Hallgren, R., Knutson, L., Ryde, M., Paalzow, L.K., 1992. Regional jejunal perfusion, a new in vivo approach to study oral drug absorption in man. Pharm. Res. 9, 1243-1251.   DOI
21 Lennernas, H., 2000. Animal Perfusion Studies. In Dressman, J.B., Lennernas, H., (eds.) Oral drug Absorption. Marcell Dekker, New York, pp. 73-98.
22 Lentz, K.A., Polli, J.W., Wring, S.A., Humphreys, J.E., Polli, J.E., 2000. Influence of passive permeability on apparent P-glycoprotein kinetics, Pharm. Res. 17, 1456-1460.   DOI
23 Leo, A., Hansch, C., Elkins, D., 1971. Partition coefficients and their uses. Chem. Rev. 71, 525-616.   DOI
24 Lipinski, C.A., 2002. Observation on current ADMET technology: no uniformity exists. Paper presented at the Proceedings of the Annual Meeting of the Society of Biomolecular Screening. The Hauge, The Netherlands.
25 Mueller, P., Rudin, D.O., Tien, H.T., Westcott, W.C., 1962. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 194, 979-980.   DOI
26 Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J., 1997. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 23, 3-25.   DOI   ScienceOn
27 Madara, J., Trier, J., 1987. Functional morphology of the mucosa of the small intestine. In: L. Johnson (Ed.) Physiology of the gastrointestinal tract. Raven Press, New York, pp. 1209-1249.
28 Martin, Y.C., 1981. A practitioner’s perspective of the role of quantitative structure-activity analysis in medicinal chemistry. J. Med. Chem. 24, 229-237.   DOI
29 Kansy, M., Fischer, H., Kratzat, K., Senner, F., Wagner, B., Parrilla, I., 2001. High-throughput artificial membrane permeability studies in early lead discovery and development. In Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R., (eds.) Pharmacokinetic Optimization in Drug Research. Verlag Helvetica Chimica Acta. Zurich and Wiley-VCH, Weinheim, pp. 447-464.
30 Kansy, M., Senner, F., Gubernator, K., 1998. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem. 41, 1007-1010.   DOI
31 Kararli, T.T., 1989. Gastrointestinal absorption of drugs. Crit. Rev. Ther. Drug Carrier Syst. 6, 39-86.
32 Karlsson, J., Artursson, P., 1991. A method for the determination of cellular permeability coefficients and aqueous boundary layer thickness in monolayers of intestinal epithelial (Caco-2) cells grown in permeable filter chambers. Int. J. Pharm. 71, 51-64.
33 Komiya, I., Park, J., Yamani, A., Ho, N., Higuchi, W., 1980. Quantitative mechanistic studies in simultaneous fluid flow and intestinal absorption using steroids as model solutes. Int. J. Pharm. 4, 249-262.   DOI
34 Kelder, J., Grootenhuis, P.D., Bayda, O.M., Delbressine, L.P., Ploemen, J.P., 1997. Polar molecular surface as a dominating determinant for oral absorption and brain penetration of dugs. Pharm. Res. 16, 1514-1519.   DOI
35 Kennedy, T., 1997. Managing the drug discovery/development interface. Drug Dis. Today. 2, 436-444.   DOI
36 Knutson, L., Odlind, B., Hallgren, R., 1989. A new technique for segmental jejunal perfusion in man. Am. J. Gastroenterol. 84, 1278-1284.
37 Kool, M., de Haas, M., Scheffer, G.L., Scheper, R.J., Van Eijk, M.J.T., Juijn, J.A., Baas, F., Borst, P., 1997. Analysis of expression of cMoat (MRP2), MRP3, MRP4, and MRP5, homologues of the multidrug resistance-associated protein gene (MRP1), in human cancer cell lines. Cancer Res. 57, 3537-3547.
38 Hopfer, U., Nelson, K., Perrotto, J., Isselbacher, K., 1973. Glucose transport in isolated brush border membrane from rat small intestine. J. Biol. Chem. 248, 25-32.
39 Horio, M., Chin, K.V., Currier, S.J., Goldenberg, S., Wiliams, C., Pasatan, I., Gottesman, M.M., Handler, J., 1989. Transepithelial transport of drugs by the multidrug transporter in cultured Madin-Darby canine kidney cell epithelia. J. Biol. Chem. 264, 14880-14884.
40 Howell, D., Kenny, A.J., Turner, J., 1992. A survey of membrane peptidases in two human colonic cell lines, Caco-2 and HT29. Biochem. J. 284, 595-601.   DOI
41 Hu, M., Borchardt, R.T., 1992. Transport of a large neutral amino acid in a human intestinal epithelial cell line (Caco-2): uptake and efflux of phenylalanine. Biochim. Biophys. Acta. 1135, 233-244.   DOI
42 Kaitin K.I., DiMasi J.A., 2000. Measuring the pace of new drug development in the user fee era. Drug Inf. J. 34, 673-680.   DOI
43 Hunter, J., Hirst, B.H., 1997. Intestinal secretion of drugs: the role of P-glycoprotein and related drug efflux systems in limiting oral drug absorption. Adv. Drug Del. Rev. 25, 129-157.   DOI
44 Hunter, J., Hirst, B.H., Simmons, N.L., 1993a. Drug absorption limited by p-glycoprotein-mediated secretory drug transport in human intestinal epithelial Caco-2 cell layers. Pharm. Res. 10, 743-749.   DOI
45 Hunter, J., Jepson, M.A., Tsuruo, T., Simmons, N.L., Hirst, B.H., 1993b. Functional expression of Pglycoprotein in apical membranes of human intestinal epithelial Caco-2 cells: kinetics of vinblastine secretion and interaction with modulators. J. Biol. Chem. 268, 14991-14997.
46 Kaitin K.I., Healy E.M., 2000. The new drug approvals of 1996,1997, and 1998: drug development trends in the user fee era. Drug Inf. J. 34, 1-14.   DOI
47 Hansch, C., Clayton, J.M., 1973. Lipophilic character and biological activity of drugs. II. The parabolic case. J. Pharm. Sci. 62, 1-21.   DOI
48 Hansch, C., Dunn, W.J., 1972. Linear relationships between lipocomes philic character and biological activity of drugs. J. Pharm. Sci. 61, 1-19.   DOI
49 Hauri, H.P., Sterchi, E.E., Bienz, D., Fransen, J.A.M., Marxer, A., 1985. Expression and intracellular transport of microvillus hydrolases in human intestinal epithelial cells. J. Cell Biol. 101, 838-851.   DOI
50 Hidalgo, I., Raub, T., Borchardt, R., 1989. Characterization of human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology. 96, 736-749.   DOI
51 Hidalgo, I.J., Raub, T.J., Borchardt, R.T., 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model for intestinal epithelial permeability. Gastroenterology. 96, 736-749. 120 5 Cell Cultures in Drug Discovery: An Industrial Perspective.   DOI
52 Hidalgo, I.J., 2001. Assessing the absorption of new pharmaceuticals. Curr. Top. Med. Chem. 1, 385-401.   DOI
53 Hidalgo, I.J., Borchardt, R.T., 1990. Transport of bile acids in a human intestinal epithelial cell line, Caco-2. Biochim. Biophys. Acta. 1035, 97-103.   DOI   ScienceOn
54 Hidalgo, I.J., Li, J., 1996. Carrier-mediated transport and efflux mechanisms in Caco-2 cells. Adv. Drug Deliv. Rev. 22, 53-66.   DOI
55 Hillgren, K.M., Kato, A., Borchardt, R.T., 1995. In vitro systems for studying intestinal drug absorption. Med. Res. Rev. 15, 83-109.   DOI
56 Ho, N.F.H., Park, J.Y., Ni, P.F., Higuchi, W.I., 1983. Advancing quantitative and mechanistic approaches in interfacing gastrointestinal drug absorption studies in animals and humans. In Crouthamel, W., Sarapu, A.C., (eds.) Animal Models for Oral Drug Delivery in Man; In Situ and In vivo Approaches. American Pharmaceutical Association Washington, D.C., USA, pp 27-106.
57 Doluisio, J., Billups, N., Dittert, L., Sugita, E., Swintosky, J., 1969. Drug absorption. I. An in situ rat gut technique yielding realistic absorption rates. J. Pharm. Sci. 58, 1196-1200.   DOI
58 Fagerholm, U., Johansson, M., Lennernas, H., 1996. Comparison between permeability coefficients in rats and human jejunum. Pharm. Res. 13, 1335-1341.
59 Faller, B., Wohnsland, F., 2001. Physicochemical parameters as tools in drug discovery and lead optimization. In Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R., (eds.) Pharmacokinetic Optimization in Drug Research. Verlag Helvetica Chimica Acta. Zurich and Wiley-VCH, Weinheim, pp. 257-274.
60 Fogh, J., Fogh, J.M., Orfeo, T., 1977. One hundred and twentyseven cultured human cell lines producing tumors in nude mice. J. Natl. Cancer Inst. 59, 221-225.   DOI
61 Ganapathy, M.E., Brandsch, M., Prasad, P.D., Ganapathy, V., Leibach, F.H., 1995. Differential recognition of b-lactam antibiotics by intestinal and renal peptide transporters, PEPT1 and PEPT2. J. Biol. Chem. 270, 25672-25677.   DOI
62 Ganta, S., Sharma, P., Garg, S., 2008. Permeability Assessment. In Gad, S.C., (eds.) Preclinical Development Handbook: ADME and Biopharmaceutical Properties. John Wiley and Sons Inc, New Jersey, USA, pp 227-248.
63 Genty, M., Gonzalez, G., Clere, C., Desangle-Gouty, V., Legendre, J.Y., 2001. Determination of the passive absorption through the rat intestine using chromatographic indices and molar volume. Eur. J. Pharm. Sci. 12, 223-229.   DOI
64 Gobas, F.A., Lahittette, J.M., Garofolo, G., Shiu, W., MacKay, D., 1988. A novel method for measuring membrane-water partition coefficients of hydrophobic organic chemicals:comparison with 1-octanol-water partitioning. J. Pharm. Sci. 77, 265-272.   DOI
65 Hammerle, S.P., Rothen-Rutishauser, B., Kramer, S.D., Gunthert, M., Wunderli-Allenspach, H., 2000. P-glycoprotein in cell cultures: a combined approach to study expression, localisation, and functionality in the confocal microscope. Eur. J. Pharm. Sci. 12, 69-77.   DOI
66 Comer, J.E.A., 2003. High-throughput Measurement of log D and pKa. In Van de Waterbeemd, H., Lennernas, H., Artursson, P., (eds.) Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, pp. 25.
67 Conradi, R.A., Burton, P.S., Borchardt, R.T., 1996. Physico-chemical and biological factors that influence a drug’s cellular permeability by passive diffusion. Methods Principles Med. Chem. 4, 233-252.
68 Dearden, J., 1990. Molecular structure and drug transport, in Hansch, C., Sammes, P.G., Taylor, J.B., (eds.), Comprehensive Medicinal Chemistry, Pergamon, Oxford, pp. 375-411.
69 Cools, A.C., Janssen, L.H.M., 1983. Influence of sodium ion-pair formation on transport kinetics of warfarin through octanolimpregnated membranes. J. Pharm. Pharmacol. 35, 689-691.   DOI
70 Croop, J.M., Raymond, M., Haber, D., Devault, A., Arceci, R.J., Gros, P., Houseman, D., 1989. The three multidrug resistance (mdr) genes are expressed in a tissue-specific manner in nonnal human tissues. Mol. Cell Biol. 9, 1346-1350.   DOI
71 Dearden, J.C., Ghafourian, T., 1999. Hydrogen Bonding Parameters for QSAR: Comparison of Indicator Variables, Hydrogen Bond Counts, Molecular Orbital and Other Parameters. J. Chem. Inf. Comput. Sci. 39, 231-235   DOI
72 Delie, F., Rubas, W.A., 1997. Human colonic cell line sharing similarities with enterocytes as a model to examine oral absorption: advantages and limitations of the Caco-2 model. Crit. Rev. Ther. Drug Carrier Syst. 14, 221-286.
73 DiMasi, J.A., Seibring, M.A., Lasagna, L., 1994. New drug development in the United States from 1963 to 1992. Clin. Pharmacol. Ther. 55, 609-622.   DOI
74 Dix, C.J., Hassan, I.F., Obray, H.Y., Shah, R., Wilson, G., 1990. The transport of vitamin B12 through polarized monolayers of Caco-2 cells. Gastroenterology. 98, 1272-1279.   DOI
75 Camenisch, G., Alsenz, J., Van de Waterbeemd, H., Folkers, G., 1998. Estimation of permeability by passive diffusion through Caco-2 cell monolayers using the drugs’ lipophilicity and molecular weight. Eur. J. Pharm. Sci. 6, 313-319.   DOI
76 Camenisch, G., Folkers, G., Van de Waterbeemd, H., 1996. Review of theoretical passive drug absorption models: historical background, recent development and limitations. Pharm. Acta. Helv. 71, 309-327.   DOI
77 Chantret, I., Barbat, A., Dussaulx, E., Brattain, M.G., Zweibaum, A., 1988. Epithelial polarity, villin expression, and enterocytic differentiation of cultured human colon carcinoma cells: a survey of twenty cell lines. Cancer Res. 48, 1936-1942.
78 Camenisch, G., Folkers, G., Van de Waterbeemd, H., 1997. Comparison of passive drug transport through Caco-2 cells and artificial membranes. Int. J. Pharm. 147, 61-70.   DOI
79 Carr, K., Toner, P., 1984. Morphology of the intestinal mucosa. In: T. Csaky., (Ed.) Pharmacology of the Intestine. Springer-Verlag, New York, pp. 1-50.
80 Carrie're, V., Chambaz, J., Rousset, M., 2001. Intestinal responses to xenobiotics. Toxicol. In Vitro 15, 373-378.   DOI
81 Chong, S., Dando, S. A., Morrison, R.A., 1997. Evaluation of BIOCOAT2 intestinal epithelium differentiation environment (3-day cultured Caco-2 cells) as an absorption screening model with improved productivity. Pharm. Res. 14, 1835-1837.   DOI
82 Clark, D.E., 2001. Prediction of intestinal absorption and blood brain barrier penetration by computational methods. Combin. Chem. High Throughput Screen. 4, 477-496.   DOI   ScienceOn
83 Clark, D.E., Pickett, S.D., 2000. Computational methods for the prediction of ‘drug-likeness’. Drug Discov. Today 5, 49-58.   DOI
84 Benet, L.Z., Wu, C.Y., Hebert, M.F., Wacher, V.J., 1996. The importance of drug metabolism and antitransport processes: a paradigm shift in oral drug delivery. J. Control. Release 39, 139-143.   DOI
85 Bjorge, S., Hamelehle, K.L., Homa, R., Rose, S.E., Turluck, D.A., Wright, D.S., 1991. Evidence for glucuronide conjugation of pnitrophenol in the Caco-2 cell model. Pharm. Res. 8, 1441-1443.   DOI
86 Broach, J.R., Thorner, J., 1996. High-throughput screening for drug discovery. Nature. 384, 14-16.   DOI
87 Blais, A., Bissonnette, P., Berteloot, A., 1987. Common characteristics for Na+-dependent sugar transport in Caco-2 cells and human fetal colon. J. Membr. Biol. 99, 113-125.   DOI
88 Bouer, R., Barthe, L., Philibert, C., Tournaire, C., Woodley, J., Houin, G., 1999. The roles of P-glycoprotein and intracellular metabolism in the intestinal absorption of methadone: in vitro studies using the rat everted intestinal sac. Fundam. Clin. Pharmacol. 13, 494-500.   DOI
89 Brandsch, M., Miyamoto, Y., Ganapathy, V., Leibach, F.H., 1994. Expression and protein C-dependent regulation of peptide/ H+co-transport system in the Caco-2 human colon carcinoma cell line. Biochem. J. 299, 253-260.   DOI
90 Burton, P.S., Conradi, R.A., Hilgers, A.R., Ho, N.F.H., 1993. Evidence for a polarized efflux system for peptides in the apical membrane of Caco-2 cells. Biochem. Biophys. Res. Commun. 190, 760-766.   DOI
91 Caldwell, G.W., Masucci, J.A., Evangelisto, M., White, R., 1998. Evaluation of the immobilized artificial membrane phosphatidylcholine. Drug discovery column for high-performance liquid chromatographic screening of drug-membrane interactions. J. Chromatogr. A. 800, 161-169.   DOI
92 Artursson, P., Palm, K., Luthman, K., 1996. Caco-2 monolayers in experimental and theoretical predictions of drug transport. Adv. Drug Deliv. Rev. 22, 67-84.   DOI
93 Avdeef, A., 2001. High-throughput measurements of solubility profiles, in Testa, B., van de Waterbeemd, H., Folkers, G., Guy, R., (eds.), Pharmacokinetic Optimization in Drug Research, Verlag Helvetica Chimica Acta, Zurich, and Wiley-VCH, Weinheim, pp. 305-326.
94 Avdeef, A., Strafford, M., Block, E., Balogh, M. P., Chambliss, W., Khan, I., 2001b. Drug absorption in vitro model: filter-immobilized artificial membranes. 2. Studies of the permeability properties of lactones in Piper methysticum Forst. Eur. J. Pharm. Sci. 14, 271-280.   DOI
95 Avdeef, A., 2001a. Physicochemical Profiling (Solubility, Permeability, and Charge State). Curr. Topics Med. Chem. 1, 277-351.   DOI
96 Avdeef A., 2003. Absorption and Drug Development: Solubility, Permeability, and Charge State. John Wiley & Sons, Inc,. Hoboken, New Jersey, pp. 128-131.
97 Avdeef, A., 2003. High-throughput measurements of permeability profiles, in van de Waterbeemd, H., Lennernas, H., Artursson, P. (eds.), Drug Bioavailability. Estimation of Solubility, Permeability, Absorption and Bioavailability Wiley-VCH, Weinheim, pp. 46-69
98 Avdeef, A., Testa, B., 2002. Physicochemical profiling in drug research: A brief state-of-the-art of experimental techniques. Cell. Mol. Life Sci. 59, 1681-1689.   DOI
99 Balimane, P.V., Chong, S., Morrison, R.A., 2000. Current methodologies used for evaluation of intestinal permeability and absorption. J. Pharmacol. Toxicol. Methods 44, 301-312.   DOI
100 Baranczyk-Kuzma, A., Garren, J.A., Hidalgo, I.J., Borchardt, R.T., 1991. Substrate specificity and some properties of phenol sulphotransferase from human intestinal Caco-2 cells. Life Sci. 49, 1197-1206.   DOI
101 Yamamoto, A., Kawaratani, T., Kawashima, K., Hashida, M., Sezaki, H., 1990. Intestinal transport of sulfanilic acid in rats immunized with protein-sulfanilic acid conjugate. Pharrn. Res. 7, 767-771.   DOI
102 Wils, P., Warnery, A., Phung-ba, V., Legrain, D., Scherman, D., 1994. High lipophilicity decreases drug transport across intestinal epithelial cells. J. Pharmacol. Exp. Ther. 269, 654-658.
103 Wilson, G., Hassan, I.F., Dix, C.J., Williamson, I., Shah, R., MacKay, M., Artursson, P., 1990. Transport and permeability properties of human Caco-2 cells: an in vitro model of the intestinal epithelial cell barrier. J. Control. Release 11, 25-40.   DOI
104 Wohnsland, F., Faller, B., 2001. High-throughput permeability pH profile and high throughput alkane/water log P with artificial membranes. J. Med. Chem. 44, 923-930.   DOI
105 Yang, C.Y., Cai, S.J., Liu, H., Pidgeon, C., 1996. Immobilized artificial membranes screens for drug-membrane interactions. Adv. Drug. Deliv. Rev. 23, 229-256.   DOI
106 Yazdanian, M., Glynn, S.L., Wright, J.L., Hawi, H., 1997. Correlating partitioning and caco-2 cell permeability of structurally diverse small molecular weight compounds, Pharm. Res. 15, 1490-1494.
107 Ungell, A.L., Karlsson, J., 2003. Cell Cultures in Drug Discovery : An Industrial Perspective. In: Drug Bioavailability: Estimation of Solubility, Permeability, Absorption and Bioavailability. Van de Waterbeemd, H., Lennernas, H., Artursson, P., WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. pp. 90-131.
108 Yee, S., 1997. In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man - Fact or myth? Pharm. Res. 14, 763-766.   DOI
109 Yoon, C.H., Shin, B.S., Chang, H.S., Kwon, L.S., Kim, H.Y., Yoo, S.E., Yoo, S.D., 2004. Rapid Screening of Drug Absorption Potential Using the Immobilized Artificial Membrane Phosphatidylcholine Column and Molar Volume. Chromatographia 60, 399-404.   DOI
110 Zhu, C., Jiang, L., Chen, T.M., Hwang, K.K., 2002. A comparative study of artificial membrane permeability assay for high-throughput profiling of drug absorption potential. Eur. J. Med. Chem. 37, 399-407.   DOI
111 Ussing, H.H., Zerahn, K., 1951. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta. Physiol. Scand. 23, 110-127.   DOI
112 Van de Waterbeemd, H., Testa, B., 1987. The parametrization of Lipophilicity and other structural properties in drug design. Adv. Drug Res. 16, 85-225.
113 Van de Waterbeemd, H., 2000. Intestinal permeability: prediction from theory. Drugs Pharm. Sci. 106, 31-49.
114 Van de Waterbeemd, H., Camenisch, G., Folkers, G., Raevsky, O.A., 1996. Estimation of Caco-2 Cell Permeability using Calculated Molecular Descriptors. Quant. Struct. Act. Relat. 15, 480-490.   DOI
115 Van de Waterbeemd, H., Kansy, M., 1992. Hydrogen-bonding Capacity and Brain Penetration. Chimia. 46, 299-303.
116 Walter, E., Kissel, T., 1995. Heterogeneity in the human intestinal cell line Caco-2 leads to differences in transepithelial transport. Eur. J. Pharm. Sci. 3, 215-230.   DOI
117 Van de Waterbeemd, H., Smith, D.A., Beaumont, K., Walker, D.K., 2001. Property based design: optimization of drug absorption and pharmacokinetics. J. Med. Chem. 44, 1313-1333.   DOI
118 Van Rees, H., De Wolff, F., Noach, E., 1974. The influence of diphenylhydantoin on intestinal glucose absorption in the rat. Eur. J. Pharmacol. 28, 310-315.   DOI
119 Waclawski, A. P., Sinko, P. J., 1996. Oral absorption of antiacquired immune deficiency syndrome nucleoside analogues: 2. Carriermediated intestinal transport of stavudine in rat and rabbit preparations. J. Pharm. Sci. 85, 478-485.   DOI
120 Taylor, E.W., Gibbons, J.A., Braeckman, R.A., 1997. Intestinal absorption screening of mixture from combinatorial libraries in the Caco-2 model. Pharm. Res. 14, 572-577.   DOI
121 Testa, B., Carrupt, P.A., Gaillard, P, Billois, F., Weber, P., 1996. Lipophilicity in molecular modelling. Pharm. Res. 13, 335-343.   DOI
122 Thiebaud, F., Tsuuo, T., Hamada, H., Gottesman, M.M., Pastan, I., Willingham, M.C., 1987. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. USA 84, 7735-7738.   DOI
123 Thompson, M., Lennox, R.B., McClelland, R.A., 1982. Structure and electrochemical properties of microfiltration filter-lipid membrane systems. Anal. Chem. 54, 76-81.   DOI
124 Thwaites, D.T., McEwan, G.T.A., Hirst, B.H., Simmons, N.L., 1995. $H^+$ coupled a-methylaminoisobutyric acid transport in human intestinal Caco-2 cells. Biochim. Biophys. Acta. 1234, 111-118.   DOI
125 Ungell, A., Nylander, S., Bergstrand, S., Sjoberg, A., Lennernas, H., 1998. Membrane transport of drugs in different regions of the intestinal tract of the rat. J. Pharm. Sci. 87, 360-366.   DOI
126 Tsuji, A., Tamai, I., 1996. Carrier-mediated intestinal tansport of dugs. Phann. Res. 13, 963-977.   DOI
127 Tsuji, A., Miyamoto, E., Hoshimoto, N., Yamana, T., 1978. GI absorption of beta-lactam antibiotics II: deviation from pH-partition hypothesis in penicillin absorption through in situ and in vitro lipoidal barriers. J. Pharm. Sci. 67, 1705-1711.   DOI
128 Tukker, J.J., 2000. In Vitro Methods for the Assesment of Permeanility. In Dressman, J.B., Lennernas, H., (eds.) Oral drug Absorption. Marcell Dekker, New York, pp. 51-72.
129 Stenberg, P., Luthman, K., Artursson, P., 2000. Virtual screening of intestinal drug permeability. J. Control. Release 65, 231-243.   DOI
130 Stephens, R.H., O’Neill, C.A., Warhurst, A., Carlson, G.L., Rowland, M., Warhurst, G., 2001. Kinetic profiling of P-glycoprotein-mediated drug efflux in rat and human intestinal epithelia. J. Pharmacol. Exp. Ther. 296, 584-591.
131 Stevenson, C.L., Augustijns, P.F., Hendren, R.W., 1999. Use of Caco-2 cells and LC/MS/MS to screen a peptide combinatorial library for permeable structures. Int. J. Pharm. 177, 103-115.   DOI
132 Sugano, K., Hamada, H., Machida, M., Ushio, H., 2001a. High throughput prediction of oral absorption: Improvement of the composition of the lipid solution used in parallel artificial membrane permeability assay. J. Biomolec. Screen. 6, 189-196.   DOI
133 Sugano, K., Hamada, H., Machida, M., Ushio, H., Saitoh, K., Terada, K., 2001b. Optimized conditions of biomimetic artificial membrane permeability assay. Int. J. Pharm. 228, 181-188.   DOI
134 Raevsky, O.A., Grigor’ev, V.Y., Kireev, D.B., Zefirov, N.S., 1992. Complete thermodynamic description of H-bonding in the framework of multiplicative approach. Quantitative Structure Activity Relationships. 11, 49-63.   DOI
135 Taillardat-Bertschinger, A., Carrupt, P.A., Bardato, F., Testa, B., 2003. Immobilized artificial membrane HPLC in drug research. J. Med. Chem. 46, 655-665.   DOI
136 Taipalensuu, J., Tornblom, H., Lindberg, G., Einarsson, C., Sjoqvist, F., Melhus, H., Garberg, P., Sjostrom, B., Lundgren, B., Artursson, P., 2001. Correlation of gene expression of ten efflux proteins of the ATP-binding cassette transporter family in normal human jejunum and in human intestinal epithelial Caco-2 cell monolayers. J. Pharmacol. Exp. Ther. 299, 164-170. 122 5 Cell Cultures in Drug Discovery: An Industrial Perspective.
137 Tayar, N.E., Testa, B., Carrupt, P.A.,1992. Polar intermolecular interactions encoded in partition coefficients: an indirect estimation of hydrogen bond parameters of polyfunctional solutes. J. Phys. Chem. 96, 1455-1459.   DOI
138 Raevsky, O.A., Schaper, K.J., 1998. Quantitative estimation of hydrogen bond contribution to permeability and absorption processes of some chemicals and drugs. Eur. J. Med. Chem. 33, 799-807   DOI
139 Riley, S.A., Warhurst, G., Crowe, P.T., Turnberg, L.A., 1991. Active hexose transport across cultured human Caco-2 cells: characterisation and influence of culture conditions. Biochim. Biophys. Acta. 1066, 175-182.   DOI
140 Rubas, W., Cromwell, M.E., Shahrokh, Z., Villagran, J., Nguyen, T.N., Wellton, M., Nguyen, T. H., Mrsny, R. J., 1996. Flux measurements across Caco-2 monolayers may predict transport in human large intestinal tissue. J. Pharm. Sci. 85, 165-169   DOI
141 Sandstrom, R., Karlsson, A., Knutson, L., Lennemiis, H., 1998. Jejunal absorption and metabolism of R/S-verapamil in humans. Pharm. Res. 15, 856-862.   DOI