• Title/Summary/Keyword: In vitro neuron cell culture

Search Result 19, Processing Time 0.031 seconds

In Vitro Neural Cell Differentiation Derived from Human Embryonic Stem Cells: Effects of PDGF-bb and BDNF on the Generation of Functional Neurons (인간 배아 줄기세포 유래 신경세포로의 분화: BDNF와 PDGF-bb가 기능성 신경세포 생성에 미치는 영향)

  • Cho, Hyun-Jung;Kim, Eun-Young;Lee, Young-Jae;Choi, Kyoung-Hee;Ahn, So-Yeon;Park, Se-Pill;Lim, Jin-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.29 no.2
    • /
    • pp.117-127
    • /
    • 2002
  • Objective: This study was to investigate the generation of the functional neuron derived from human embryonic stem (hES, MB03) cells on in vitro neural cell differentiation system. Methods: For neural progenitor cell formation derived from hES cells, we produced embryoid bodies (EB: for 5 days, without mitogen) from hES cells and then neurospheres (for $7{\sim}10$ days, 20 ng/ml of bFGF added N2 medium) from EB. And then finally for the differentiation into mature neuron, neural progenitor cells were cultured in i) N2 medium only (without bFGF), ii) N2 supplemented with 20 ng/ml platelet derived growth factor-bb (PDGF-bb) or iii) N2 supplemented with 5 ng/ml brain derived neurotrophic factor (BDNF) for 2 weeks. Identification of neural cell differentiation was carried out by immunocytochemistry using $\beta_{III}$-tubulin (1:250), MAP-2 (1:100) and GFAP (1:500). Also, generation of functional neuron was identified using anti-glutamate (Sigma, 1:1000), anti-GABA (Sigma, 1:1000), anti-serotonin (Sigma, 1:1000) and anti-tyrosine hydroxylase (Sigma, 1:1000). Results: In vitro neural cell differentiation, neurotrophic factors (PDGF and BDNF) treated cell groups were high expressed MAP-2 and GFAP than non-treated cell group. The highest expression pattern of MAP-2 and $\beta_{III}$-tubulin was indicated in BDNF treated group. Also, in the presence of PDGF-bb or BDNF, most of the neural cells derived from hES cells were differentiated into glutamate and GABA neuron in vitro. Furthermore, we confirmed that there were a few serotonin and tyrosine hydroxylase positive neuron in the same culture environment. Conclusion: This results suggested that the generation of functional neuron derived from hES cells was increased by addition of neurotrophic factors such as PDGF-bb or BDNF in b-FGF induced neural cell differentiation system and especially glutamate and GABA neurons were mainly produced in the system.

Neuron-on-a-Chip technology: Microelectrode Array System and Neuronal Patterning (뉴런온칩 기술: 미세전극칩시스템과 신경세포 패터닝 기술)

  • Nam, Yoon-Key
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.2
    • /
    • pp.103-112
    • /
    • 2009
  • Neuron-on-a-Chip technology is based on advanced neuronal culture technique, surface micropatterning, microelectrode array technology, and multi-dimensional data analysis techniques. The combination of these techniques allowed us to design and analyze live biological neural networks in vitro using real neurons. In this review article, two underlying technologies are reviewed: Microelectrode array technology and Neuronal patterning technology. There are new opportunities in the fusion of these technologies to apply them in neurobiology, neuroscience, neural prostheses, and cell-based biosensor areas.

In Vitro Biocompatibility Test of Multi-layered Plasmonic Substrates with Flint Glasses and Adhesion Films

  • Kim, Nak-Hyeon;Byun, Kyung Min;Hwang, Seoyoung;Lee, Yena;Jun, Sang Beom
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.2
    • /
    • pp.174-179
    • /
    • 2014
  • Since in vitro neural recording and imaging applications based on a surface plasmon resonance (SPR) technique have expanded dramatically in recent years, cytotoxicity assessment to ensure the biosafety and biocompatibility for those applications is crucial. Here, we report the cytotoxicity of the SPR substrate incorporating a flint glass whose refractive index is larger than that of a conventional crown glass. A high refractive index glass substrate is essential in neural signal detection due to the advantages such as high sensitivity and wide dynamic range. From experimental data using primary hippocampal neurons, it is found that a lead-based flint glass is not appropriate as a neural recording template although the neuron cells are not directly attached to the toxic glass. We also demonstrate that the adhesion layer between the glass substrate and the gold film plays an important role in achieving the substrate stability and the cell viability.

Induction of a Neuronal Phenotype from Human Bone Marrow-Derived Mesenchymal Stem Cells

  • Oh, Soon-Yi;Park, Hwan-Woo;Cho, Jung-Sun;Jung, Hee-Kyung;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • v.34 no.4
    • /
    • pp.177-183
    • /
    • 2009
  • Human mesenchymal stem cell (hMSCs) isolated from human adult bone marrow have self-renewal capacity and can differentiate into multiple cell types in vitro and in vivo. A number of studies have now demonstrated that MSCs can differentiate into various neuronal populations. Due to their autologous characteristics, replacement therapy using MSCs is considered to be safe and does not involve immunological complications. The basic helix-loop-helix (bHLH) transcription factor Olig2 is necessary for the specification of both oligodendrocytes and motor neurons during vertebrate embryogenesis. To develop an efficient method for inducing neuronal differentiation from MSCs, we attempted to optimize the culture conditions and combination with Olig2 gene overexpression. We observed neuron-like morphological changes in the hMSCs under these induction conditions and examined neuronal marker expression in these cells by RTPCR and immunocytochemistry. Our data demonstrate that the combination of Olig2 overexpression and neuron-specific conditioned medium facilitates the neuronal differentiation of hMSCs in vitro. These results will advance the development of an efficient stem cell-mediated cell therapy for human neurodegenerative diseases.

Differentiation of Human Adult Adipose Derived Stem Cell in vitro and Immunohistochemical Study of Adipose Derived Stem Cell after Intracerebral Transplantation in Rats

  • Ko, Kwang-Seok;Lee, Il-Woo;Joo, Won-Il;Lee, Kyung-Jun;Park, Hae-Kwan;Rha, Hyung-Keun
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.2
    • /
    • pp.118-124
    • /
    • 2007
  • Objective : Adipose tissue is derived from the embryonic mesoderm and contains a heterogenous stromal cell population. Authors have tried to verify the characteristics of stem cell of adipose derived stromal cells (ADSCs) and to investigate immunohistochemical findings after transplantation of ADSC into rat brain to evaluate survival, migration and differentiation of transplanted stromal cells. Methods : First ADSCs were isolated from human adipose tissue and induced adipose, osseous and neuronal differentiation under appropriate culture condition in vitro and examined phenotypes profile of human ADSCs in undifferentiated states using flow cytometry and immunohistochemical study. Human ADSCs were transplanted into the healthy rat brain to investigate survival, migration and differentiation after 4 weeks. Results : From human adipose tissue, adipose stem cells were harvested and subcultured for several times. The cultured ADSCs were differentiated into adipocytes, osteoctye and neuron-like cell under conditioned media. Flow cytometric analysis of undifferentiated ADSCs revealed that ADSCs were positive for CD29, CD44 and negative for CD34, CD45, CD117 and HLA-DR. Transplanted human ADSCs were found mainly in cortex adjacent to injection site and migrated from injection site at a distance of at least 1 mm along the cortex and corpus callosum. A few transplanted cells have differentiated into neuron and astrocyte. Conclusion : ADSCs were differentiated into multilineage cell lines through transdifferentiation. ADSCs were survived and migrated in xenograft without immunosuppression. Based on this data, ADSCs may be potential source of stem cells for many human disease including neurologic disorder.

Effect of Glial-neuronal Cell Co-culture on GFAP Expression of Astrocytes (신경세포가 별아교세포의 아교섬유성 산단백질 표현에 미치는 영향)

  • Bae Hyung-Mi;Park Jung-Sun;Yeon Dong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.3
    • /
    • pp.285-296
    • /
    • 1997
  • Injury to brain transforms resting astrocytes to their reactive form, the hallmark of which is an increase in glial fibrillary acidic protein (GFAP), the major intermediate filament protein of their cell type. The overall glial response after brain injury is referred to as reactive gliosis. Glial-neuronal interaction is important for neuronal migration, neurite outgrowth and axonal guidance during ontogenic development. Although much attention has been given to glial regulation of neuronal development and regeneration, evidences also suggest a neuronal influence on glial cell differentiation, maturation and function. The aim of the present study was to analyze the effects of glial-hippocampal neuronal co-culture on GFAP expression in the co-cultured astrocytes. The following antibodies were used for double immunostaining chemistry; mouse monoclonal antibodies for confirm neuronal cells, rabbit anti GFAP antibodies for confirm astrocytes. Primary cultured astrocytes showed the typical flat polygonal morphology in culture and expressed strong GFAP and vimentin. Co-cultured hippocampal neurons on astrocytes had phase bright cell body and well branched neurites. About half of co-cultured astrocytes expressed negative or weak GFAP and vimentin. After 2 hour glutamate (0.5 mM) exposure of glial-neuronal co-culture, neuronal cells lost their neurites and most of astrocytes expressed strong CFAE and vimentin. In Western blot analysis, total GFAP and vimentin contents in co-cultured astrocytes were lower than those of primary cultured astrocytes. After glutamate exposure of glial-neuronal co-culture, GFAP and vimentin contents in astrocytes were increased to the level of primary cultured astrocytes. These results suggest that neuronal cell decrease GFAP expression in co-cultured astrocytes and hippocampal neuronal-glial co-culture can be used as a reactive gliosis model in vitro for studying GFAP expression of astrocytes.

  • PDF

The Study on Regenerative Effects of Ginseng on Injured Axonal and Non-Neuronal cell

  • Lim, Chang-Bum;Oh, Min-Seok
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.14-28
    • /
    • 2008
  • Objective : This study was carried out to understand effects of ginseng(hearinafter ; GS, Panax Ginseng) extract on regeneration responses on injured sciatic nerves in rats. Methods :Using white mouse, we damaged sciatic nerve & central nerve, and then applied GS to the lesion. Then we observed regeneration of axon and non-neuron. Results : 1. NF-200 protein immunostaining for the visualization of axons showed more distal elongation of sciatic nerve axons in GS-treated group than saline-treated control 3 and 7 days after crush injury. 2. GAP-43 protein was increased in the injured sciatic nerve and further increased by GS treatment. Enhanced GAP-43 protein signals were also observed in DRG prepared from the rats given nerve injury and GS treatment. 3. GS treatment in vivo induced enhanced neurite outgrowth in preconditioned DRG sensory neurons. In vitro treatment of GS on sensory neurons from intact DRG also caused increased neurite outgrowth. 4. Phospho-Erk1/2 protein levels were higher in the injured nerve treated with GS than saline. Phospho-Erk1/2 protein signals were mostly found in the axons in the injured nerve. 5. NGF and Cdc2 protein levels showed slight increases in the injured nerves of GS-treated group compared to saline-treated group. 6. The number of Schwann cell population was significantly increased by GS treatment in the injured sciatic nerve. GS treatment with cultured Schwann cells increased proliferation and Cdc2 protein signals. 7. GS pretreatment into the injured spinal cord generated increased astrocyte proliferation and oligodendrocytes in culture. In vitro treatment of GS resulted in more differentiated pericytoplasmic processes compared with saline treatment. 8. More arborization around the injury cavity and the occurrence at the caudal region of CST axons were observed in GS-treated group than in saline-treated group. Conclusion :GS extract may have the growth-promoting activity on regenerating axons in both peripheral and central nervous systems.

  • PDF

The effect of herbal medicine on cultured cerebral cortical neurons induced by glutamate neurotoxicity (대뇌피질 신경세포에 미치는 glutamate 독성에 대한 한약재 효능연구)

  • Lee, Mi-Young;Kang, Bong-Joo;Yoon, Yoo-Sik;Hong, Seong-Gil;Gwag, Byoung-Joo;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.4 no.1 s.4
    • /
    • pp.99-114
    • /
    • 1998
  • The effect of herbal medicine on glutamate mediated neurotoxicity was studied in mouse neurons in primary culture. Immature cerebral cortex neurons (ED14) were maintained for up to 2 weeks in vitro, and we investigated the expression pattern of neuron differentiation and cytotoxicity of cell death, including LDH activity. Neuronal maturation initiated on day 7 and the susceptibility to glutamate-induced cell death was highly sensitive on Day 11 (Fig. 1). Thus, the exposure of the neurons to glutamate caused a dose$(0.1mM{\sim}1mM)$ and time$(4h{\sim}24h)$-dependent neurotoxicity(Fig. 4). Glutamate-induced neurodegeneration was prevented by Shipchondaebotang(SD), Yollyounggobondan(YG), Yugmijihwangwon(YJ) and the death of neurons exposed to glutamate was blocked by the NMDA receptor antagonist MK-801 (Fig. 5).

  • PDF