• Title/Summary/Keyword: In vitro kinase assay

Search Result 113, Processing Time 0.02 seconds

Inhibitory Effect of Chloroform Extract of Marine Algae Hizikia Fusifomis on Angiogenesis (Hizikia fusiformis 클로로포름 추출물의 in vitro 및 in vivo 혈관신생 억제 연구)

  • Myeong-Eun Jegal;Yu-Seon Han;Shi-Young Park;Ji-Hyeok Lee;Eui-Yeun Yi;Yung-Jin Kim
    • Journal of Life Science
    • /
    • v.34 no.6
    • /
    • pp.399-407
    • /
    • 2024
  • Angiogenesis is the process by which new blood vessels form from existing blood vessels. This phenomenon occurs during growth, healing, and menstrual cycle changes. Angiogenesis is a complex and multifaceted process that is important for the continued growth of primary tumors, metastasis promotion, the support of metastatic tumors, and cancer progression. Impaired angiogenesis can lead to cancer, autoimmune diseases, rheumatoid arthritis, cardiovascular disease, and delayed wound healing. Currently, there are only a handful of effective antiangiogenic drugs. Recent studies have shown that natural marine products exhibit antiangiogenic effects. In a previous study, we reported that the hexane extract of H. fusiformis (HFH) could inhibit the development of new blood vessels both in vitro and in vivo. The aim of this study was to describe the inhibitory effect of chloroform extracts of H. fusiformis on angiogenesis. To investigate how chloroform extract prevents blood vessel growth, we examined its effects on HUVEC, including cell migration, invasion, and tube formation. In a mouse Matrigel plug assay, H. fusiformis chloroform extract (HFC) also inhibited angiogenesis in vivo. Certain proteins associated with blood vessel growth were reduced after HFC treatment. These proteins include vascular endothelial growth factor (VEGF), mitogen-activated protein kinase (MAPK)/extracellular signal transduction kinase, and serine/threonine kinase 1 (AKT). These studies have shown that the chloroform extract of H. fusiformis can inhibit blood vessel growth both in vitro and in vivo.

Partial Purification of OsCPK11 from Rice Seedlings and Its Biochemical Characterization (벼 유식물에서 OsCPK11의 부분 정제 및 생화학적 특성 규명)

  • Shin, Jae-Hwa;Kim, Sung-Ha
    • Journal of Life Science
    • /
    • v.30 no.2
    • /
    • pp.137-146
    • /
    • 2020
  • Calcium is one of the important secondary signaling molecules in plant cells. Calcium-dependent protein kinases (CDPK)-the sensor proteins of Ca2+ and phosphorylating enzymes-are the most abundant serine/threonine kinases in plant cells. They convert and transmit signals in response to various stimuli, resulting in specific responses in plants. In rice, 31 CDPK gene families have been identified, which are mainly involved in plant growth and development and are known to play roles in response to various stress conditions. However, little is known about the biochemical characteristics of CDPK proteins. In this study, OsCPK11-a CDPK in rice-was partially purified, and its biochemical characteristics were found. Partially purified OsCPK11 from rice seedlings was obtained by three-step column chromatography that involved anion exchange chromatography consisting of DEAE, hydrophobic interaction chromatography consisting of phenyl-Sepharose, and gel filtration chromatography consisting of Sephacryl-200HR. An in vitro kinase assay using partially purified OsCPK11 was also performed. This partially purified OsCPK11 had a molecular weight of 54 kDa and showed a strong hydrophobic interaction with the hydrophobic resin. In vitro kinase assay showed that the OsCPK11 also had Ca2+-dependent autophosphorylation activity. The OsCPK11 phosphorylated histone III-S, and the optimum pH for its kinase activity was found to be 7.5~8.0. The native OsCPK11 shared several biochemical characteristics with recombinant OsCPK11 studied previously, and both had Ca2+-dependent autophosphorylation activity and favored histone III-S as a substrate for kinase activity, which also had a Ca2+-dependence.

Forward Gene Mutation Assay of Seven Benzophenone-type UV Filters using L5178Y Mouse Lymphoma Cell

  • Jeon, Hee-Kyung;Sarma, Sailendra Nath;Kim, Youn-Jung;Ryu, Jae-Chun
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • The effects of high energy short wave solar radiation on human skin have received much publicity as the major cause of accelerated skin ageing and of skin cancers. To meet public demand, the cosmetic industry has developed sun protection factor products, which contain a variety of so-called "UV filters", among others benzophenone (BP) and its metabolites are the widely used UV filters. UV filters are also used to prevent UV light from damaging scents and colors in a variety of cosmetics products and to protect of plastic products against light-induced degradation. There are many variants of BP in use. In this respect, to regulate and to evaluate the hazardous effect of BP-type UV filters will be important to environment and human health. The genotoxicity of 7 BP-type UV filters was evaluated in L5178Y $(tk^{+/-})$ mouse lymphoma cells in vitro. BP, benzhydrol, 4-hydroxybenzophenone 2-hydroxy-4-methoxybenzophenone and 2, 4-dihydroxybenzophenone did not induce significant mutation frequencies both in the presence and absence of metabolic activation system. 2, 2'-Dihydroxy-4-methoxybenzophenone appeared the positive results at the highest dose, i.e. 120.4 ${\mu}g/mL$ only in the absence of metabolic activation system. And also, 2, 3, 4-trihydroxybenzophenone revealed a significant increase of mutation frequencies in the range of 138.1-207.2 ${\mu}g/mL$ in the absence of metabolic activation system and 118.3-354.8 ${\mu}g/mL$ in the presence of metabolic activation system. Through the results of MLA with 7 BP-type UV filters in L5178Y cells in vitro, we may provide the important clues on the genotoxic potentials of these BP-type UV filters.

Expression of OB-R, Regulation of Mitogen Activated Protein Kinase Activity and Maturation by Leptin in Mouse Oocytes (생쥐 난자 및 초기배아에서 Leptin 수용체 발현 및 Leptin에 의한 Mitogen Activated protein Kinase 활성의 조절 및 난자의 성숙 조절)

  • Kang, Byung-Moon;Han, Hyun-Joo;Seo, Hye-Young;Hong, Suk-Ho;Gye, Myung-Chan
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.28 no.2
    • /
    • pp.111-120
    • /
    • 2001
  • Objective: To verify the expression of leptin receptor (OB-R) in oocytes and preimplantation embryos, the involvement of mitogen activated protein kinase (MAPK or Erk1/2) in the leptin signaling, and effect of leptin on the oocyte maturation in mice. Method: RT-PCR analysis of OB-R was conducted in germinal vesicle (GV)-intact and MII stage oocytes, and 1, 2, 8-cell embryos and blastocysts. Germinal vesicle breakdown (GVB), polar body extrusion, monitored in the presence or absence of leptin ($1{\mu}M$). Following the leptin treatment, temporal changes in MAPK activity were verified by immunoprecipitation and in vitro kinase assay in MII oocytes. Results: The expression of OB-R mRNA was found in GV and MII oocyte but not in the embryos. MAPK activity of the MII oocytes was significantly increased by brief incubation in the HTF supplemented with leptin ($1{\mu}M$). Priming of PD098059, a MEK inhibitor to leptin treatment attenuated the activation of MAPK by leptin in MII oocytes. Following 24 hrs of culture of the GV oocytes, leptin significant increased the GVB and 1 st polar body extrusion. Conclusion: This result suggested that functional interaction between leptin and OB-R resulted in potentiation of MAPK (Erk1/2) activity in MII oocytes through MEK activation and that leptin might be a local regulator of meiotic maturation of the mouse oocytes.

  • PDF

Cobalt Chloride-induced Apoptosis and Extracellular Signal-regulated Protein Kinase 1/2 Activation in Rat C6 Glioma Cells

  • Yang, Seung-Ju;Pyen, Jhin-Soo;Lee, In-Soo;Lee, Hye-Young;Kim, Young-Kwon;Kim, Tae-Ue
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.480-486
    • /
    • 2004
  • Brain ischemia brings about hypoxic insults. Hypoxia is one of the major pathological factors inducing neuronal injury and central nervous system infection. We studied the involvement of mitogen-activated protein (MAP) kinase in hypoxia-induced apoptosis using cobalt chloride in C6 glioma cells. In vitro cytotoxicity of cobalt chloride was tested by MTT assay. Its $IC_{50}$ value was $400\;{\mu}M$. The DNA fragment became evident after incubation of the cells with $300\;{\mu}M$ cobalt chloride for 24 h. We also evidenced nuclear cleavage with morphological changes of the cells undergoing apoptosis with electron microscopy. Next, we examined the signal pathway of cobalt chloride-induced apoptosis in C6 cells. The activation of extracellular signal-regulated protein kinase 1/2 (ERK 1/2) started to increase at 1 h and was activated further at 6 h after treatment of 400 M cobalt chloride. In addition, pretreatment of PD98059 inhibited cobalt chloride-induced apoptotic cell morphology in Electron Microscopy. These results suggest that cobalt chloride is able to induce the apoptotic activity in C6 glioma cells, and its apoptotic mechanism may be associated with signal transduction via MAP kinase (ERK 1/2).

The Inhibitory Effects of Alnus Japonica Steud. Extract on Melanogenesis (적양 추출물의 멜라닌 합성 저해효과)

  • Lee, Jun Young;Im, Kyung Ran;Jung, Taek Kyu;Yoon, Kyung-Sup
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.159-166
    • /
    • 2013
  • In order to develop new skin whitening agents, we prepared the EtOAc layer (AJE) after enzyme treatment of 75% EtOH extract of the Alnus Japonica Steud. We measured their tyrosinase inhibitory activity in vitro and melanin synthesis inhibitory activity in B16-F1 melanoma cells. They did not show inhibitory activity against mushroom tyrosinase but showed melanin synthesis inhibitory activity in a dose-dependent manner. In a melanin synthesis inhibition assay, AJE suppressed melanin production up to 52% at a concentration of $40{\mu}g/mL$. To elucidate the mechanism of the inhibitory effects of AJE on melanogenesis, we measured expression of melanogenesis-related proteins by the western blot assay. As a result, AJE suppressed the expression of tyrosinase related protein 1 (TRP-1) and microphthalmia associated transcription factor (MITF). Moreover, AJE increased the expression of phosphorylated extracellular signal-regulated kinase (p-ERK). These results conclude that ERK activation by AJE reduces melanin synthesis via MITF downregulation and is subsequent to the inhibition of TRP-1 expression. Therefore, we suggest that AJE could be used as active ingredients for skin whitening.

Characterization of Dephosphocoenzyme A Kinase from Streptomyces peucetius ATCC27952, and Its Application for Doxorubicin Overproduction

  • Lee, Na-Rae;Rimal, Hemraj;Lee, Joo-Ho;Oh, Tae-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.9
    • /
    • pp.1238-1244
    • /
    • 2014
  • Dephosphocoenzyme A (CoaE) catalyzes the last step in the biosynthesis of the cofactor coenzyme A. In this study, we report the identification and application of CoaE from Stretomyces peucetius ATCC27952. After expression of coaE, the protein was found to have a molecular mass of 28.6 kDa. Purification of the His-tagged fused CoaE protein was done by immobilized metal-affinity chromatography, and then in vitro enzymatic coupling assay was performed. The increasing NADH consumption with time shed light on the phosphorylating activity of CoaE. Furthermore, the overexpression of coaA and coaE independently under the $ermE^*$ promoter in the doxorubicin -producing wild type strain, resulted in 1.4- and 1.5-fold enhancements in doxorubicin production, respectively. In addition, the overexpression of both genes together showed a 2.1-fold increase in doxorubicin production. These results established a positive role for secondary metabolite production from Streptomyces peucetius.

A Comparative Study of Korean mistletoe lectin and bee venom on mechanism in inducing apoptosis of Hep G2, a liver cancer cell

  • Lim, Seong-Woo
    • The Journal of Korean Medicine
    • /
    • v.39 no.4
    • /
    • pp.158-170
    • /
    • 2018
  • Objectives: The objective of this study is Korean mistletoe lectin (Viscum album coloratum agglutinin, VCA) and bee venom (BV) to experimental prove comparative study of VCA and BV on the anti-cancer effect and mechanisms of action. Methods: In this study, it was examined in a human hepatocellular carcinoma cell line, Hep G2 cells. Cytotoxic effects of VCA and BV on Hep G2 cells were determined by 3- (4, 5-dimethylthiazol-2-yl) -2, 5-diphenyltetrazolium bromide (MTT) assay in vitro. VCA and BV killed Hep G2 cells in a time- and dose-dependent manner. Results: The apoptotic cell death was then confirmed by propidium iodide staining and DNA fragmentation analysis. The mechanisms of action was examined by the expression of anti-apoptotic proteins and activation of mitogen-activated protein kinases. Treatment of Hep G2 cells with VCA activated poly (ADP-ribose) polymerase-1 (PARP-1) known as a marker of apoptosis, and mitogen-activated protein kinases signaling pathways including SAPK/JNK, MAPK and p38. BV also activated PARP-1, MAPK, p38 but not JNK. The expression level of anti-apoptotic molecule, Bcl-X, was decreased by VCA treatment but not BV. Finally, the phosphorylation level of ERM proteins involved in the cytoskeleton homeostasis was decreased by both stimuli. Conclusion: We examined the involvement of kinase in VCA or BV - induced apoptosis by using kinase inhibitors. VCA-induced apoptosis was partially inhibited by in the presence.

Scutellaria baicalensis Georgi(SBG) inhibits Melanin Synthesis in Mouse B16 Melanoma Cells (α-MSH 유도성 멜라닌 합성에 있어서 황금 추출물의 역할과 작용기전 연구)

  • Hong, Sung-Jin;Kim, Kyung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.22 no.2
    • /
    • pp.104-117
    • /
    • 2009
  • Objective : Melanin is one of the most important facor in skin color. Melanin protects human skin from ultraviolet radiation otherwise it causes melanin pigmentation. So this experiment is carried out for test whether Scutellaria baicalensis Georgi(SBG) inhibits melanin synthesis and tyrosinase activity in mouse B16 melanoma cells. Method : The melanin synthesis inhibition effects of SBG were examined by in vitro melanin production assay. We assessed inhibitory effects of SBG on melanin contents from B16F1 melanoma cell, on tyrosinase activity(cell and cell free system), effect of SBG on the expression tyrosinase, Microphthalmia-associated Transcription Factor(MITF), Extracellular signal-regulated Kinase(ERK). Result : SBG inhibited melanin synthesis induced $\alpha$-MSH($\alpha$-Melanin Stimulating Hormone) in B16F1. SBG inhibited tyrosinase activity and expression. And SBG down-regulates MITF and stimulated ERK activation in B16F1. Conclusion : According to above results, SBG was improved its suppression effect to the inhibition of melanin synthesis, tyrosinase activation, and tyrosinase promotor activation. So SBG is considered to be used for an strong source of skin whitening effect.

  • PDF

Diarylpropionitrile inhibits melanogenesis via protein kinase A/cAMP-response element-binding protein/microphthalmiaassociated transcription factor signaling pathway in α-MSH-stimulated B16F10 melanoma cells

  • Lee, Hyun Jeong;An, Sungkwan;Bae, Seunghee;Lee, Jae Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.113-123
    • /
    • 2022
  • Diarylpropionitrile (DPN), a selective agonist for estrogen receptor β (ERβ), has been reported to regulate various hormonal responses through activation of ERβ in tissues including the mammary gland and brain. However, the effect of DPN on melanogenesis independent of ERβ has not been studied. The aim of this study is to examine the possibility of anti-melanogenic effect of DPN and its underlying mechanism. Melanin contents and cellular tyrosinase activity assay indicated that DPN inhibited melanin biosynthesis in alpha-melanocyte stimulating hormone-stimulated B16F10 melanoma cell line. However, DPN had no direct influence on in vitro tyrosinase catalytic activity. On the other hand, 17β-estradiol had no effect on inhibition of melanogenesis, suggesting that the DPN-mediated suppression of melanin production was not related with estrogen signaling pathway. Immunoblotting analysis showed that DPN down-regulated the expression of microphthalmia-associated transcription factor (MITF), a central transcription factor of melanogenesis and its down-stream genes including tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2. Also, DPN attenuated the phosphorylation of protein kinase A (PKA) and cAMP-response element-binding protein (CREB). Additionally, DPN suppressed the melanin synthesis in UVB-irradiated HaCaT conditioned media culture system suggesting that DPN has potential as an anti-melanogenic activity in physiological conditions. Collectively, our data show that DPN inhibits melanogenesis via downregulation of PKA/CREB/MITF signaling pathway.