• Title/Summary/Keyword: In vitro germination

Search Result 276, Processing Time 0.024 seconds

Impact of Rhizosphere Competence of Biocontrol Agents upon Diseases Suppression and Plant Growth Promotion

  • Park, Chang-Seuk-
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.27-49
    • /
    • 1994
  • Root colonization of biocontrol agents via seed treatment was investigated and a compatible combination, Gliocladium virens G872B and Pseudomonas putida Pf3, in colonizing cucumber rhizosphere was confirmed through the study. Much higher number of fungal and bacterial propagules were detected when two isolates were inoculated together. The presence of Pf3 in root system was greatly helpful to G872B to colonize at root tip. The mechanism of this phenomenon is partially elucidated through the results of in vitro experiments and the observations of scanning electron and fluorescence microscope. Addition of Pf3 cells resulted earlier germination of G872B conidia and increased mycelial growth. And the more number of germinated conidia on seed coat, the more vigorous hypal streching and sporulation on the root surface were observed in coinoculated treatment. The propagules of G872B on the cucumber root when they were challenged against the pathogenic Fusarium oxysporum, were even higher than that of G872B treated alone, and the magnitude of such a difference was getting grater toward the root ip and the population of F. oxysporum on the root was reduced by seed inoculation of G872B. The rhizosphere competence was obviously reflected to disease suppression and plant growth promotion that induced by the given isolate. Green house experiments revealed that the combined treatment provided long-term disease suppression with greater rate and the larger amount of fruit yield than single treatments. Through this study the low temperature growing Pseudomonas fluorescens M45 and MC07 were evaluated to apply them to the winter crops in field or plastic film house. In vitro tests reveal that M45 and MC07 inhibited the mycelial growth of Pythium ultimum, Rhizoctona solani and Phytophthora capsici and enhanced growth of cucumber cotyledon in MS agar. This effect was more pronounced when the bacteria were incubated at 14$^{\circ}C$ than at 27$^{\circ}C$. And disease suppression and plant growth promotion in green house were also superior at low temperature condition. Seed treatment of M45 or soil treatment of MC07 brought successful control of damping-off and enhanced seedling growth of cucumber. The combined treatment of two isolates was more effective than any single treatment.

  • PDF

Conservation of Thymus pallidus Cosson ex Batt. by shoot tip and axillary bud in vitro culture

  • Ansari, Zineb Nejjar El;Boussaoudi, Ibtissam;Benkaddour, Rajae;Hamdoun, Ouafaa;Lemrini, Mounya;Martin, Patrick;Badoc, Alain;Lamarti, Ahmed
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.53-65
    • /
    • 2020
  • Here, we describe an efficient and rapid protocol for the micropropagation of Thymus pallidus Cosson ex Batt., a very rare medicinal and aromatic plant in Morocco. After seed germination, we tested the effect of different macronutrients, cytokinins alone or in combination with gibberellic acid (GA3) or auxins, on T. pallidus plantlet growth. We found that Margara macronutrients (N30K) had the best effect on the in vitro development of the plantlets. The addition of 0.93 μM/L 1,3-diphenylurea (DPU), 0.46 μM/L adenine (Ad), and 0.46 and 0.93 μM/L kinetin (Kin) resulted in the best shoot multiplication and elongation. In addition, the combination of 0.46 μM/L Kin, DPU, or Ad with gibberellic acid, in particular, 0.46 μM/L Ad + 0.58 μM/L GA3 and 0.46 μM/L Kin + 1.15 μM/L GA3, led to better bud and shoot multiplication. Moreover, the integration of the combinations of 0.46 μM/L Kin and auxins, namely 0.46 μM/L Kin + 2.85 μM/L indole-3-acetic acid (IAA), 0.46 μM/L Kin + 2.85 or 5.71 μM/L indole-3-butyric acid (IBA), and 0.46 μM/L Kin + 0.3 or 0.57 μM/L 1-naphthaleneacetic acid (NAA), in the culture medium led to better root development and optimized aerial growth. Finally, the in vitro plants from the medium containing N30K + 0.46 μM/L Kin + 2.85 μM/L IAA were successfully acclimatized; these plants served as a source for repeating in vitro culture.

Isolation and In vitro and In vivo Antifungal Activity of Phenylacetic acid Produced by Micromonospora aurantiaca Strain JK-1

  • Kim, Hyo-Jin;Hwang, In-Sun;Kim, Beom-Seok;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.22 no.1
    • /
    • pp.75-89
    • /
    • 2006
  • The actinomycete strain JK-1 that showed strong inhibitory activity against some plant pathogenic fungi and oomycetes was isolated from Jung-bal Mountain in Ko-yang, Korea. The strain JK-1 produced spores singly borne on sporophores and the spores were spherical and 0.9-1.2 11m in diameter. The cell wall of the strain JK-1 contained meso-diaminopimelic acid. The actinomycete strain JK-1 was identified as the genus Micromonospora based on the morphological, physiological, biochemical and chemotaxonomic characteristics. From the 168 rDNA analysis, the strain JK-1 was assigned to M aurantiaca. The antibiotic MA-1 was purified from the culture broth of M aurantiaca JK-1 using various purification procedures, such as Diaion HP20 chromatography, C18 flash column chromatography, silica gel flash column chromatography and Sephadex LH-20 column chromatography. $^{1}H-$, $^{13}C-NMR$ and EI mass spectral analysis of the antibiotic MA-1 revealed that the antibiotic MA-1 is identical to phenylacetic acid. Phenylacetic acid showed in vitro inhibitory effects against fungal and oomycete pathogens Alternaria mali, Botrytis cinerea, Magnaporthe grisea, Phytophthora capsici and yeast Saccharomyces cerevisiae at < 100 $\mug$ $ml^{-1}$. In addition, phenylacetic, acid completely inhibited the growth of Sclerotinia sclerotiorum, Bacillus subtilis, Candida albicans, Xanthomonas campestris pv. vesicatoria at < $\mug$ $ml^{-1}$. Phenylacetic acid strongly inhibited conidial germination and hyphal growth of M grisea and C. orbiculare. Phenylacetic acid showed significantly high levels of inhibitory' effect against rice blast and cucumber anthracnose diseases at 250 $\mug$ $ml^{-1}$. The control efficacies of phenylacetic acid against the two diseases were similar to those of commercial compounds tricyclazole, iprobenfos and chlorothalonil .n the greenhouse.

Efficacy of Fluopicolide against Phytophthora capsici Causing Pepper Phytophthora Blight

  • Shin, Jin-Ho;Kim, Joo-Hyung;Kim, Hyung-Jo;Kang, Bumg-Wan;Kim, Kyeong-Tae;Lee, Jeong-Deug;Kim, Heung-Tae
    • The Plant Pathology Journal
    • /
    • v.26 no.4
    • /
    • pp.367-371
    • /
    • 2010
  • In this study, we evaluated the efficacy of fluopicolide to inhibit Phytophthora capsici in vitro, and to control pepper Phytophthora blight in a greenhouse and pepper fields. Fluopicolide was tested on various developmental stages of P. capsici 06-143 (a sensitive isolate to metalaxyl) and JHAW1-2 (a resistant isolate to metalaxyl). Mycelial growth and zoosporangium germination of both isolates were completely inhibited at $4.0\;{\mu}g/ml$ of the fungicide in vitro. The $EC_{50}$ (effective concentrations reducing 50%) of P. capsici 06-143 against zoospore were $0.219\;{\mu}g/ml$, while those of JHAW1-2 were $3.829\;{\mu}g/ml$. When fluopicolide was applied at 100 and $1,000\;{\mu}g/ml$ 7 days before inoculation with P. capsici 06-143 in the greenhouse test, the disease was controlled completely until 6 days after inoculation. However, the curative effect of fluopicolide was not as much as the protective effect. When fluopicolide was applied by both soil drenching and foliar spraying, the treatments strongly protected pepper against the Phytophthora blight disease. Based on these results, fluopicolide can be a promising candidate for a fungicide to control P. capsici in the pepper fields.

In vitro selection of fungicides for control of leaf blight of sweet persimmon tree caused by Pestalotiopsis theae (In vitro에서 단감나무 둥근갈색무늬병 방제를 위한 살균제 선발)

  • Chang, T.H.;Lim, T.H.
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.4
    • /
    • pp.50-56
    • /
    • 2001
  • In vitro experiments, several fungicides including prochloraz, tebuconazole, fluazinam, fludioxonil, and iminoctadine-triacetate showed more than 85% inhibition of mycelial growth of Pestalotiopsis theae (SP-3). Dichlofluanid and chlorothalonil inhibited mycelial growth at the rate of 10 and 33%, however benomyl did not inhibit mycelial growth of the fungus. Minimum inhibitory concentration(MICs) of iminictadine-triacetate on the mycelial growth of SP-3 isolate was $10{\mu}g/m{\ell}$, but that of P. theae $\underline{MAFF}$ 752002 and P. longiseta $\underline{MAFF}$ 752001 was $1{\mu}g/m{\ell}$. MIC of benomyl, chlorothalonil, dichlorofluanid was $1,000{\mu}g/m{\ell}$, and that of fludioxonil, fluazinam, tebuconazole was $10{\mu}g/m{\ell}$. Conidial germination was inhibited more than 80% in tile medium which contained $1{\mu}g/m{\ell}$ of prochloraz, tebuconazole, fluazinam, fludioxonil, and minoctadine-triacetate. Control values of benomyl, chlorothalonil and dichlofluanid were 40, 60 and 30%, respectively. The controlling effect of iminoctadine-triacetate ($10{\mu}g/m{\ell}$) aganist P. theae (SP-3) in leaf disc test was more than 93%, but benomyl and dichlofluanid could not control leaf blight disease caused by P. theae (SP-3). Tebuconazole, fluazinam, fludioxonil, and iminoctadine-triacetate showed more than 94% of protective and curative effect of leaf blight of sweet persimmon, while, benomyl and dichlofluanid did not show any control effect of the disease.

  • PDF

Molecular characterization of reciprocal crosses of Aerides vandarum and Vanda stangeana (Orchidaceae) at the protocorm stage

  • Kishor, Rajkumar;Devi, H.S.;Jeyaram, K.;Singh, M.R.K.
    • Plant Biotechnology Reports
    • /
    • v.2 no.2
    • /
    • pp.145-152
    • /
    • 2008
  • Aerides vandarum and Vanda stangeana are two rare and endangered vandaceous orchids with immense floricultural traits. The intergeneric hybrids were synthesized by performing reciprocal crosses between them. In vitro germination response of the immature hybrid embryos was found to be best on half-strength Murashige and Skoog medium supplemented with 20% (v/v) coconut water/liquid endosperm from tender coconut. Determination of hybridity was made as early as the immature seeds or embryos germinated in vitro, using randomly amplified polymorphic DNA (RAPD) markers. Out of 15 arbitrarily chosen decamer RAPD primers, two were found to be useful in amplification of polymorphic bands specific to the parental species and their presence in the reciprocal crosses. However, a decisive profile that can identify the reciprocal crosses could not be provided by RAPD. Amplification of the trnL-F non-coding regions of chloroplast DNA of the parent species and hybrids aided easy identification of the reciprocal crosses from the fact that maternal inheritance of chloroplast DNA held true for these intergeneric hybrids. Subsequent restriction digestion of the polymerase chain reaction (PCR) amplified trnL-F non-coding regions of chloroplast DNA also consolidated the finding. Such PCR-based molecular markers could be used for early determination of hybridity and easy identification of the reciprocal crosses.

Dormancy of Somatic Embryos Derived from the Cotyledon of Korean Ginseng

  • Yang Deok-Chun;Yoon Eui-Soo;Choi Kwang-Tae
    • Journal of Ginseng Research
    • /
    • v.23 no.3 s.55
    • /
    • pp.130-134
    • /
    • 1999
  • Somatic embryos were induced directly from cotyledon explants of Korean ginseng (Panax ginseng C.A. Meyer) on Murashige and Skoog (MS) medium with 2,4-D, BAP, kinetin or lacking growth regulators. When somatic embryos formed on all media grew to cotyledonary stage, the further development of embryos was ceased and remained in white color. By gibberellic acid (over 1.0 mg/1 $GA_3$) treatment, all the somatic embryos turned rapidly to green and germinated within 3 weeks. Chilling treatment also induced the germination of somatic embryos. The effective temperature regime was $-2^{\circ}C$ for over 8 weeks but more higher temperature than $0^{\circ}C$ did not effective for germination of somatic embryos. Ultrastructural observation revealed that the cotyledon cells of somatic embryos without chilling or $GA_3$ treatment contained numerous lipid reserves, dense cytoplasm, proplastids and non-activated mitochondria with poorly differentiated internal structure, but the cotyledon cells of germinating somatic embryos after chilling or $GA_3$ treatment highly vacuolated and contained well-developed chloroplasts and active state of mitochondria enclosing numerous cristae. The above results indicate that in vitro developed somatic embryos of Panax ginseng may be dormant after mature similar to zygotic embryos.

  • PDF

Screening of Antifungal Activities of Plant Extracts against Phytopathogenic Fungi (식물추출물의 식물병원성 곰팡이 포자에 대한 발아억제 활성)

  • Park, Sang-jo;Rhu, Young Hyun;Bae, Soo Gon;Seo, Dong Hwan
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.343-351
    • /
    • 2017
  • Plant extracts were screened for antifungal activity against major plant pathogens, Botrytis sp., Collectotrichum sp., Alternaria sp. and Cylindrocarpon sp. using 96-well microdilution method. Among the 662 methanol extracts from 401 plant species, 36 extracts showed complete inhibition of spore germination against at least one of four pathogenic fungi. Extracts of Morus alba twig and Sophora flavescens root showed minimum inhibition concentration (MIC) at $1,250{\mu}g/ml$ against Botrytis sp.. Extracts of Chloranthus japonicus root showed MIC at $1,250{\mu}g/ml$ against Collectotrichum sp.. Extracts of Glycyrrhiza uralensis aerial part, Inula helenium root and Menispermum dauricum root showed MIC between 625 and $1,250{\mu}g/ml$ against Alternaria sp.. G. uralensis aerial part and I. helenium root showed MIC at $1,250{\mu}g/ml$ against Cylindrocarpon sp.. Specifically, the extracts of Agrimonia pilosa root, Angelica tenuissima root, Asarum sieboldii root, Campsis grandifolia leaf and twig, Cnidium officinale root, Dictamnus dasycarpus root, G. uralensis aerial part, I. helenium root and M. alba twig completely inhibited spore germination at lower than $5,000{\mu}g/ml$ against all of four pathogenic fungi. Two methanol extracts from G. uralensis aerial part and M. alba twig may used as a candidate to develop into effective disease management materials in plant cultivation.

Developmental and Structural Diversity of Regenerated Plants in Cell and Tissue Cultures (세포조직배양계에서 재생된 식물의 발생 및 형태학적 다양성)

  • 소웅영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1993.07a
    • /
    • pp.1-36
    • /
    • 1993
  • It is possible to regenerate plants from calli, single cells and protoplasts of numerous species via organogenasis or embryogenesis in cell and tissue culture systems. Also such regeneration of plants can directly occur from cells of explants. However certain plant species has not been yet provided cultures suitable for plant regeneration from cells or tissues. For example, we have to confirm the regenerability of plant from cells before preparing transformed cells for application. Even more, it is very important to notice that regenerated plants in cell and tissue cultures often show structural abnormality. The mojority of those plants is functionally disordered and eventually cases degenerated. One of such examples is vitreous plants which are manifested mainly in the leaves and manifesteds to a lesser extent in the stems and roots. Regenerants in suspension cultures show more frequent vitrification than on gelled media so that relative humidity and water potential are the key factors involved in abnormal morphogenesis in vitro. The other is that somatic embryos formed in media containing BAP or high concentration of sucrose show frequently cotyledon aberrancy such as polycotyledon and born type cotyledon. The embryos with aberrant cotyledon of Codonopsis lanceolata could not germinate or regenerate into plants in many cases. In contrast, the polycotyledon embryos of Aralia cordata germinated in higher percentage than two cotyledonary embryos, but horn type cotyledonary embryos rarely germinated. The major cause of poor germination is the abnormal development of plumule apex meristem.

  • PDF

Biocontrol with Myxococcus sp. KYC 1126 Against Anthracnose in Hot Pepper

  • Kim, Sung-Taek;Yun, Sung-Chul
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.156-163
    • /
    • 2011
  • Antifungal activity of three Myxococcus spp., KYC 1126, 1136, and 2001, was tested in vitro against three phytopathogenic fungi (Botrytis cinerea, Colletotrichum acutatum, and Pyricularia grisea). Spore germination and mycelial growth of the three pathogenic fungi were completely inhibited by bioactive substances from a myxobacterium KYC 1126. In addition, the activity of KYC 1126 was fungicidal, but liquid culture filtrate of KYC 1126 did not affect protoplast reversion in C. acutatum. A bioassay of KYC 1126 filtrate against anthracnose in hot pepper was conducted in the greenhouse and field at 2009 and 2010. The incidence of anthracnose in control seedlings was 74%, but was reduced to 29% after KYC 1126 treatment. The control value with KYC 1126 was 60% while that with the fungicide dithianon was 42%. In the greenhouse, disease incidence with KYC 1126 was consistentely 10-35% lower than with fungicide as a positive control. The control value with KYC 1126 was 13.4% and 41.0%, whereas that with the fungicide was 52.3% and 63% in 2009 and 2010, respectively. Although anti-anthracnose activity of KYC 1126 was not maintained for long time in the field, the bacteriolytic myxobacterium KYC 1126 could be a prospective biocontrol agent.