• Title/Summary/Keyword: In vitro expansion

Search Result 124, Processing Time 0.021 seconds

Developmental and survivability according to cryopreservation of in vitro produced bovine embryos cultured by addition of Antioxident cysteine (Cysteine 첨가로 배양된 소 수정란의 발달과 동결성 효과)

  • Cho, Sang-Rae;Kang, Sung-Sik;Kim, Ui-Hyung;Kim, Si-dong;Lee, Seok-Dong;Jeon, Gi-jun;Park, Chang-Seok;Yang, Byoung-Chul
    • Journal of Embryo Transfer
    • /
    • v.31 no.3
    • /
    • pp.221-226
    • /
    • 2016
  • The aim of the present study was to assess the embryo development and survivability of post-thawed bovine embryos produced in vitro by addition of cysteine. The rates of metaphase II formation were not differed significantly among three groups(TCM199 73.8%, TCM199 with 0.3% cysteine 76.9%, TCM199 with 0.5% cysteine 83.8%, respectively). No difference of cleavage rate(70.6~74.6%) was seen among three culture medium(TCM199 70.6%, CR1aa 71.3%, SOF 74.6%) with 0.5M cysteine. however, Significantly(P<0.05) higher development rate into blastocyst stage by 0.5M cysteine addition was obtained in SOF medium(35.6%) than in TCM199(27.6%) or CR1aa(26.6%), however no significant differences in the cleavage rates were among three culture medium. After frozen the blastocysts cultured with 0.5M cysteine, The re-expansion rates were 61.3%~86.4% among groups, and hatching rates were 26.3%~46.9% among groups, the rates of re-expansion and hatching were significantly(P<0.05) higher in SOF medium(86.4% and 46.9%) than those in TCM199(61.3% and 26.3%) and CR1aa medium(87.1 and 44.4%). After thawing, the blastocyst re-expansion rate was significantly(P<0.05) higher in in vivo (87.1%) and in vitro (70.3%) embryos. In conclusion, our results demonstrate that supplementation of IVM and IVC medium with 0.5M cysteine improved the quality of in vitro production embryo and post- thawed embryo. Future studies comparing these media systems in well-designed trials should be performed.

Effects of epigallocatechin-3-gallate on bovine oocytes matured in vitro

  • Huang, Ziqiang;Pang, Yunwei;Hao, Haisheng;Du, Weihua;Zhao, Xueming;Zhu, Huabin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1420-1430
    • /
    • 2018
  • Objective: Epigallocatechin-3-gallate (EGCG) is a major ingredient of catechin polyphenols and is considered one of the most promising bioactive compounds in green tea because of its strong antioxidant properties. However, the protective role of EGCG in bovine oocyte in vitro maturation (IVM) has not been investigated. Therefore, we aimed to study the effects of EGCG on IVM of bovine oocytes. Methods: Bovine oocytes were treated with different concentrations of EGCG (0, 25, 50, 100, and $200{\mu}M$), and the nuclear and cytoplasmic maturation, cumulus cell expansion, intracellular reactive oxygen species (ROS) levels, total antioxidant capacity, the early apoptosis and the developmental competence of in vitro fertilized embryos were measured. The mRNA abundances of antioxidant genes (nuclear factor erythriod-2 related factor 2 [NRF2], superoxide dismutase 1 [SOD1], catalase [CAT], and glutathione peroxidase 4 [GPX4]) in matured bovine oocytes were also quantified. Results: Nuclear maturation which is characterized by first polar body extrusion, and cytoplasmic maturation characterized by peripheral and cortical distribution of cortical granules and homogeneous mitochondrial distribution were significantly improved in the $50{\mu}M$ EGCG-treated group compared with the control group. Adding $50{\mu}M$ EGCG to the maturation medium significantly increased the cumulus cell expansion index and upregulated the mRNA levels of cumulus cell expansion-related genes (hyaluronan synthase 2, tumor necrosis factor alpha induced protein 6, pentraxin 3, and prostaglandin 2). Both the intracellular ROS level and the early apoptotic rate of matured oocytes were significantly decreased in the $50{\mu}M$ EGCG group, and the total antioxidant ability was markedly enhanced. Additionally, both the cleavage and blastocyst rates were significantly higher in the $50{\mu}M$ EGCG-treated oocytes after in vitro fertilization than in the control oocytes. The mRNA abundance of NRF2, SOD1, CAT, and GPX4 were significantly increased in the $50{\mu}M$ EGCG-treated oocytes. Conclusion: In conclusion, $50{\mu}M$ EGCG can improve the bovine oocyte maturation, and the protective role of EGCG may be correlated with its antioxidative property.

Alpha-linolenic acid enhances maturation and developmental competence via regulation of glutathione, cAMP and fatty acid accumulation during in vitro maturation of porcine oocytes

  • Jeon, Ye-Eun;Hwangbo, Yong;Kim, Sun-Young;Park, Choon-Keun
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.35 no.4
    • /
    • pp.357-365
    • /
    • 2020
  • The aim of present study was to investigate regulatory mechanism of alpha-linolenic acid (ALA) during in vitro maturation (IVM) on nuclear and cytoplasmic maturation of porcine oocytes. Basically, immature cumulus-oocyte complexes (COCs) were incubated for 22 h in IVM-I to which hormone was added, and then further incubated for 22 h in IVM-II without hormone. As a result, relative cumulus expansion was increased at 22 h after IVM and it was enhanced by treatment of ALA compared with control group (p < 0.05). During IVM process within 22 h, cAMP level in oocytes was decreased at 6 h (p < 0.05) and it was recovered at 12 h in ALA-treated group, while oocytes in control group recovered cAMP level at 22 h. In cumulus cells, it was reduced in all time point (p < 0.05) and ALA did not affect. Treatment of ALA enhanced metaphase-I (MI) and MII population of oocytes compared with oocytes in control group at 22 and 44 h, respectively (p < 0.05). Intracellular GSH levels in ALA group was increased at 22 and 44 h after IVM (p < 0.05), whereas it was increased in control group at 44 h after IVM (p < 0.05). In particular, the GSH in ALA-treated oocytes during 22 h of IVM was higher than control group at 22 h (p < 0.05). Lipid amount in oocytes from ALA group was higher than control group (p < 0.05). Treatment of ALA did not influence to absorption of glucose from medium. Cleavage and blastocyst formation of ALA-treated oocytes were enhanced compared with control group (p < 0.05). These findings suggest that supplementation of ALA could improve oocyte maturation and development competence through increasing GSH synthesis, lipid storage, and regulation of cAMP accumulation during early 22 h of IVM, and these might be mediated by cumulus expansion.

Improving the meiotic competence of small antral follicle-derived porcine oocytes by using dibutyryl-cAMP and melatonin

  • Jakree Jitjumnong;Pin-Chi Tang
    • Animal Bioscience
    • /
    • v.37 no.6
    • /
    • pp.1007-1020
    • /
    • 2024
  • Objective: We increased the nuclear maturation rate of antral follicle derived oocytes by using a pre-in vitro maturation (IVM) culture system and improved the developmental potential of these porcine pathenotes by supplementing with melatonin. Furthermore, we investigated the expression patterns of genes involved in cumulus expansion (HAS2, PTGS2, TNFAIP6, and PTX3) derived from small and medium antral follicles before and after oocyte maturation. Methods: Only the cumulus oocyte-complexes (COCs) derived from small antral follicles were induced with [Pre-SF(+)hCG] or without [Pre-SF(-)hCG] the addition of human chorionic gonadotropin (hCG) during the last 7 h of the pre-IVM period before undergoing the regular culture system. The mature oocytes were investigated on embryonic development after parthenogenetic activation (PA). Melatonin (10-7 M) was supplemented during in vitro culture (IVC) to improve the developmental potential of these porcine pathenotes. Results: A pre-IVM culture system with hCG added during the last 7 h of the pre-IVM period [Pre-SF(+)hCG] effectively supported small antral follicle-derived oocytes and increased their nuclear maturation rate. The oocytes derived from medium antral follicles exhibited the highest nuclear maturation rate in a regular culture system. Compared with oocytes cultured in a regular culture system, those cultured in the pre-IVM culture system exhibited considerable overexpression of HAS2, PTGS2, and TNFAIP6. Porcine embryos treated with melatonin during IVC exhibited markedly improved quality and developmental competence after PA. Notably, melatonin supplementation during the IVM period can reduce and increase the levels of intracellular reactive oxygen species (ROS) and glutathione (GSH), respectively. Conclusion: Our findings indicate that the Pre-SF(+)hCG culture system increases the nuclear maturation rate of small antral follicle-derived oocytes and the expression of genes involved in cumulus expansion. Melatonin supplementation during IVC may improve the quality and increase the blastocyst formation rate of porcine embryos. In addition, it can reduce and increase the levels of ROS and GSH, respectively, in mature oocytes, thus affecting subsequent embryos.

Effects of Eicosapentaenoic Acid during In Vitro Maturation of Porcine Oocytes: Hormone Synthesis and Embryonic Developmental Potential (에이코사펜타인산이 돼지난포란의 체외 성숙에 미치는 영향)

  • Kim, Kang-Sig;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.222-231
    • /
    • 2019
  • Among fatty acid families, the polyunsaturated fatty acids were demonstrated to be mediators in various reproductive processes as precursor of steroid hormone (via cholesterol) and prostaglandins (via arachidonic acid), and in the last decade, major research was focused on the effects of omega-6 and especially omega-3 fatty acid. Eicosapentaenoic acid, the longest members of omega-3 fatty acid family, can be produced by a series of desaturation and elongation reactions from shorter member such as α-Linolenic acid. However, very few studies have provided detailed descriptions of Eicosapentaenoic acid effects and mechanisms of action in mammalian oocytes. The purpose of this study was to evaluate the effect of Eicosapentaenoic acid supplementation on in vitro maturation and developmental potential of porcine oocytes. Various concentrations of Eicosapentaenoic acid was added into in vitro maturation medium, and we evaluated the degree of cumulus expansion, nuclear maturation rate, blastocysts quality, and levels of prostaglandin E2, 17β-estradiol, progesterone in the spent medium. High doses (100 μM) of Eicosapentaenoic acid supplementation significantly inhibited cumulus expansion and oocyte nuclear maturation, and prostaglandin E2 synthesis also significantly decreased compared with other groups (p < 0.05). Supplementation of 50 μM Eicosapentaenoic acid showed higher quality blastocysts in terms of high cell numbers and low apoptosis when compared with other groups (p < 0.05), and synthesis ratio of E2/P4 also significantly increased compared with control group (p < 0.05). However, Supplementation of 100 μM Eicosapentaenoic acid showed high apoptosis when compared with other groups (p < 0.05), and synthesis ratio of 17β-estradiol/progesterone also significantly decreased compared with control group (p < 0.05). Our results indicated that supplementation with appropriate levels of Eicosapentaenoic acid beneficially affects the change of hormone synthesis for controlling oocyte maturation, leading to improved embryo quality. However, high doses of Eicosapentaenoic acid treatment results in detrimental effects.

Effects of Essential Fatty Acids during In Vitro Maturation of Porcine Oocytes: Hormone Synthesis and Embryonic Developmental Potential

  • Kim, Kang-Sig;Park, Hum-Dai
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.34 no.2
    • /
    • pp.75-85
    • /
    • 2019
  • Omega-3 α-linolenic acid and omega-6 linoleic acid are essential fatty acids for health maintenance of human and animals because they are not synthesized in vivo. The purpose of this study was to evaluate the effect of α-linolenic acid and linoleic acid supplementation on in vitro maturation and developmental potential of porcine oocytes. Various concentrations of α-linolenic acid and linoleic acid were added into in vitro maturation medium, and we evaluated the degree of cumulus expansion, oocyte nuclear-maturation rate, blastocyst rate, blastocyst quality, and levels of prostaglandin E2, 17β-estradiol, and progesterone in the spent medium. High doses (100 μM) of α-linolenic acid and linoleic acid supplementation significantly inhibited cumulus expansion and oocyte nuclear maturation, and prostaglandin E2 synthesis also significantly decreased compared with other groups (p < 0.05). Supplementation of 50 μM α-linolenic acid and 10 μM linoleic acid showed higher quality blastocysts in terms of high cell numbers and low apoptosis when compared with other groups (p < 0.05), and synthesis ratio of 17β-estradiol / progesterone also significantly increased compared with control group (3.59 ± 0.22 vs. 2.97 ± 0.22, 3.4 ± 0.28 vs. 2.81 ± 0.19, respectively; p < 0.05). Our results indicated that supplementation with appropriate levels of α-linolenic acid and linoleic acid beneficially affects the change of hormone synthesis (in particular, an appropriate increase in the 17β-estradiol / progesterone synthesis ratio) for controlling oocyte maturation, leading to improved embryo quality. However, high doses of α-linolenic acid and linoleic acid treatment results in detrimental effects.

In Vitro Maturation of Bovine Follicular Oocytes (소 미성숙 난포란의 체외성숙)

  • 문승주;김은국;김광현;선상수;명규호;김재홍
    • Journal of Embryo Transfer
    • /
    • v.15 no.1
    • /
    • pp.39-46
    • /
    • 2000
  • This study was conducted to investigate the effect of hormones, protein sources and anti-oxidants on in vitro maturation (IVM) and in vitro fertilization(IVF) of bovine follicular oocytes. The rates of Holstein follicular oocytes classified as grade A and B(50.2% and 33.2%) were higher than those of Hanwoo cattle(40.3% and 32.0%, P<0.05). The cumulus cell expansion rates of oocytes cultured in TCM-199 and Ham's F-10 medium supplemented with 10% FCS and hormones were higher (81.9~87.6%) than those of non-treated groups (74.5~81.7%). The fertilization rates of oocytes cultured in TCM-199 and Ham's F-10 medim supplemented with 10% FCS, 1% BSA and 10% bFF was 53.8~55.0%, 51.4~52.6%, and 47.0~50.0%, respectively. The polyspermy rates was 13.6~14.2%, 10.0~11.1%, and 10.0%, respectively. When the oocytes were cultured in TCM-199 and Ham's F-10 medium with 50${\mu}{\textrm}{m}$ $\alpha$-tocopherol, the fertilization rates was 62.0 and 60.2%, respectively. In the maturation medium added of 100${\mu}{\textrm}{m}$ cysteamine, the fertilization rates was 64.7 and 66.7%, respectively. The fertilization and polyspermy rates of treated groups were higher than those of non-treated group. The results show that hormones, protein sources and anti-oxidants can provide a benefit for in vitro maturation and fertilization of bovine follicular oocytes.

  • PDF

Effect of Gonadotropins added during Maturation of Porcine Oocytes on the In Vitro Maturation, In Vitro Fertilization and Development of Embryos (돼지 난포란의 체외성숙시 성선자극호르몬의 첨가가 체외성숙, 체외수정 및 배발생에 미치는 영향)

  • 이장희;김창근;정영채
    • Journal of Embryo Transfer
    • /
    • v.9 no.1
    • /
    • pp.85-93
    • /
    • 1994
  • This study was carried out to investigate the effects of gonadotropins added during maturation of porcine oocytes on the in vitro maturation(IVM), in vitro fertilization(IVF) and developmental potential of embryos. The follicular oocytes were cultured in TCM-199 medium containing different combination of gonadotropins(5$\mu$g /ml FSR or 1OIU /ml PMSG and 1O$\mu$g /ml LH or 1OIU /ml hCG), 10% FCS and 10% PFF for 36~48h in a incubator with 5% $CO_2$ in Air at 39$^{\circ}C$ and then matured oocytes were again cultured to 120h after IVF for 6~7h with heparin(100$\mu$g /m')-treated sperm. When the oocytes were matured for 42brs in the medium containing FSH+LH, FSH+hCG, PMSG+LH or PMSG+hCG, the JVF rate of each treatment was 50.0%, 52.9%, 66.7% and 70.0%, respectively. The highest CEI (cumulus cell expansion index) was obtained from PMSG+hCG-added medium and the highest polyspermic penetration resulted from FSH+LH-added medium. The cleavage of IVF oocytes derived from hormone added IVM was significantly(P<0.05) promoted by PMSG+hCG and the cleavage rate after 36-h, 42-h and 48-h maturation aws 53.0%, 56.7% and 45.6%, respectively. The highest developmental potential resulted from the oocytes derived from PMSG+LH -added IVM.

  • PDF

Studies on the Metabolic Cooperativity between Ooccte and Cumulus Cells in Mammalian Oocyte Cumulus Complexes in vitro (포유동물 난자-난구 복합체의 Metabolic cooperativity)

  • 고선근;나철호;권혁방
    • The Korean Journal of Zoology
    • /
    • v.31 no.2
    • /
    • pp.81-86
    • /
    • 1988
  • The relationship between cumulus cell expansion, cocyte maturation and metabolic cooperativitiy was investigated by using mouse and pig cocyte-cumulus complexes in vitro. Cocyte germinal vesicle breakdown (GVBD) and cumulus expansion were manipulated with hormones or reagents which increase intracellular cAMP leveL Metabolic cooperativity between oocyte and cumulus cells was assessed by determination of the fraction of radiolabelled uridine marker that was transferred from the cumulus mass to the oocyte. Uptake of uddine marker by mouse and pig cumulus mass was increased by about fourfold of basal level with the stimulation of hormones (human choriononic gonadotrophin, HCG; follicle stimulating hormone, FSH) or cyclic AMP sttmulators (3-isobutyl-1-methylxanthine, IBMX; forskolin) during culture. However, the fraction of uridine that was transferred from the cumulus mass to the cocyte (transfer ratio) was gradually decreased during culture, irrespective with the presence of hormones or stimulators. The decrease of the transfer ratio was not correlated with the state of occyte whether they have GV or not, or with the degree of cumulus expansion. In mouse complexes, HCG induced more significant reducton of transfer ratio than other treatments. These results do not support the idea that modulations of metabolic cooperativity between cumulus cells and oocytes are important for the regulation of meiotic resumption in mammals.

  • PDF

Antioxidant effects of selenocysteine on replicative senescence in human adipose-derived mesenchymal stem cells

  • Suh, Nayoung;Lee, Eun-bi
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.572-577
    • /
    • 2017
  • In most clinical applications, human mesenchymal stem cells (hMSCs) are expanded in large scale before their administration. Prolonged culture in vitro results in cellular senescence-associated phenotypes, including accumulation of reactive oxygen species (ROS) and decreased cell viabilities. Profiling of stem cell-related genes during in vitro expansion revealed that numerous canonical pathways were significantly changed. To determine the effect of selenocysteine (Sec), a rare amino acid found in several antioxidant enzymes, on the replicative senescence in hMSCs, we treated senescent hMSCs with Sec. Supplementation of Sec in the culture medium in late-passage hMSCs reduced ROS levels and improved the survival of hMSCs. In addition, a subset of key antioxidant genes and Sec-containing selenoproteins showed increased mRNA levels after Sec treatment. Furthermore, ROS metabolism and inflammation pathways were predicted to be downregulated. Taken together, our results suggest that Sec has antioxidant effects on the replicative senescence of hMSCs.