• 제목/요약/키워드: In vitro Rumen Fermentation

Search Result 251, Processing Time 0.027 seconds

Effects of wilting and additives on the ensiling quality and in vitro rumen fermentation characteristics of sudangrass silage

  • Wan, Jiang Chun;Xie, Kai Yun;Wang, Yu Xiang;Liu, Li;Yu, Zhu;Wang, Bing
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.56-65
    • /
    • 2021
  • Objective: This study was conducted to investigate the effects of molasses and Lactobacillus plantarum on the ensiling quality and in vitro rumen fermentation of sudangrass silage prepared with or without wilting. Methods: The ensiling experiment, measured with 3 replicates, was carried out according to a 2×4 (wilted stages×additives) factorial treatment structure. Dry matter of the fresh (210 g/kg fresh matter) or wilted (305 g/kg fresh matter) sudangrass were ensiled (packed into 5.0-L plastic jars) without additive (control) or with molasses (M), Lactobacillus plantarum (LP), or molasses + Lactobacillus plantarum (M+LP). After 60 days of ensiling, the silages were analyzed for the chemical, fermentation, and in vitro characteristics. Results: After 60 days of ensiling, the fermentation parameters were affected by wilted, the additives and the interactions of wilted with the additives (p<0.05). The M+LP treatment at wilted had higher lactic acid levels and V-score (p<0.05) but lower pH values and butyric acid concentrations than the other treatments. In comparison with sudangrass before ensiling, after ensiling had lower dry matter and higher non-fibrous carbohydrate. The in vitro gas production, in vitro dry matter digestibility, in vitro crude protein digestibility, and in vitro acid fiber detergent digestibility changed under the effects of the additives. Significant interactions were observed between wilted and the additives in terms of in vitro gas production at 48 h, asymptotic gas production, gas production rate, half time, and the average gas production rate. The total volatile fatty acid levels in the additive treatments were higher than those in the control. Conclusion: Wilting and supplementation with molasses and Lactobacillus plantarum had the ability to improve the ensiling quality and in vitro nutrient digestibility of sudangrass silage. The M+LP treatment at wilted exhibited the strongest positive effects on silage quality and in vitro ruminal fermentation characteristics.

Effect of flaking on the digestibility of corn in ruminants

  • Kang, Hamin;Lee, Mingyung;Jeon, Seoyoung;Lee, Sang Moon;Lee, Ju Hwan;Seo, Seongwon
    • Journal of Animal Science and Technology
    • /
    • v.63 no.5
    • /
    • pp.1018-1033
    • /
    • 2021
  • In this study, we aimed to assess the effect of flaking on the nutrient digestibility of corn grain in ruminants. In this regard, in vitro rumen fermentation, in situ rumen degradability, and in vivo metabolic experiments were performed. The automated gas production technique was used for the in vitro fermentation experiments. Six types of corn flakes with various degrees of gelatinization (32%, 41%, 48%, 66%, 86%, and 89%) were ground and incubated in rumen fluid to measure rumen fermentation characteristics and digestion rate. The in situ degradability of ground corn, whole corn, and corn flakes with 62% and 66% gelatinization was measured by incubation in the rumen of two cannulated Holstein cows. In vivo metabolic experiments were performed using 12 crossbred goats (29.8 ± 4.37 kg) using a 3 × 3 Latin square design. The dietary treatments consisted of ground corn and flaked corn with 48% or 62% gelatinization. In vitro experiments showed that as the degree of gelatinization increased, the digestion rate increased linearly, while the discrete lag time decreased linearly (p < 0.05). The effective rumen dry matter degradability, determined by in situ fermentation, was 37%p lower in corn flakes than ground corn, assuming a passage rate of 6%/h (p < 0.01), and there was no difference between the two flakes. In the in vivo experiment, there was no difference in dry matter intake, average daily gain, feed efficiency, and nitrogen utilization among the treatment groups (p > 0.05); however, the crude fat digestibility was lower for corn flakes than for ground corn (p < 0.05). To summarize, the rate of fermentation of corn flakes increased as the degree of gelatinization increased. However, non-ground corn flakes had lower rumen digestibility and did not improve in vivo apparent nutrient digestibility, compared with ground corn. In contrast to the assumption that flaked corn provides more energy to ruminant animals than ground corn, we conclude that the digestibility and energy value of corn flakes are lower than those of ground corn if mastication does not sufficiently reduce the particle size of corn flakes.

Improvement of Nutritive Value and In vitro Ruminal Fermentation of Leucaena Silage by Molasses and Urea Supplementation

  • Phesatcha, K.;Wanapat, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.8
    • /
    • pp.1136-1144
    • /
    • 2016
  • Leucaena silage was supplemented with different levels of molasses and urea to study its nutritive value and in vitro rumen fermentation efficiency. The ensiling study was randomly assigned according to a $3{\times}3$ factorial arrangement in which the first factor was molasses (M) supplement at 0%, 1%, and 2% of crop dry matter (DM) and the second was urea (U) supplement as 0%, 0.5%, and 1% of the crop DM, respectively. After 28 days of ensiling, the silage samples were collected and analyzed for chemical composition. All the nine Leucaena silages were kept for study of rumen fermentation efficiency using in vitro gas production techniques. The present result shows that supplementation of U or M did not affect DM, organic matter, neutral detergent fiber, and acid detergent fiber content in the silage. However, increasing level of U supplementation increased crude protein content while M level did not show any effect. Moreover, the combination of U and M supplement decreased the content of mimosine concentration especially with M2U1 (molasses 2% and urea 1%) silage. The result of the in vitro study shows that gas production kinetics, cumulation gas at 96 h and in vitro true digestibility increased with the increasing level of U and M supplementation especially in the combination treatments. Supplementation of M and U resulted in increasing propionic acid and total volatile fatty acid whereas, acetic acid, butyric acid concentrations and methane production were not changed. In addition, increasing U level supplementation increased $NH_3$-N concentration. Result from real-time polymerase chain reaction revealed a significant effect on total bacteria, whereas F. succinogenes and R. flavefaciens population while R. albus was not affected by the M and U supplementation. Based on this study, it could be concluded that M and urea U supplementation could improve the nutritive value of Leucaena silage and enhance in vitro rumen fermentation efficiency. This study also suggested that the combination use of M and U supplementation level was at 2% and 1%, respectively.

Effects of Rumen Protected Choline on In vitro Ruminal Fermentation and Milk Production and Its Composition in Lactating Cows (반추위 보호 Choline이 In vitro 반추위 발효특성과 착유우의 유생산 및 유조성분에 미치는 영향)

  • Park, Byung-Ki;Kim, Byong-Wan;Jang, Hyun-Yong;Shin, Jong-Suh
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.28 no.3
    • /
    • pp.255-264
    • /
    • 2008
  • This study was conducted to evaluate the effects of rumen protected choline on in vitro ruminal fermentation and milk production and its composition in Holstein cows. Experiments were done with three treatment groups, basal diet without any supplement (T1), basal diet+23g/d of mixture of choline and wheat shorts (T2) and basal diet + 25.56 g/d of rumen protected choline (T3). The in vitro ruminal pH and ammonia concentrations were similar for three treatments during all incubation periods except for the in vitro ruminal pH on 3 hr incubation and ammonia concentrations on 9 hr incubation. No significant difference was found in the concentrations of acetate and total-VFA. The propionate and butyrate concentrations were not affected by the rumen protected choline except on 6 hr incubation on which the propionate and butyrate concentrations were intermediate (8.98 mg/dl) and least (3.22 mg/dl), respectively. Higher milk yield and milk fat and lactose were resulted in the rumen protected choline. However, the rumen protected choline did not affect the milk protein, solids not fat, total solids, MUN, somatic cell count. It is concluded that the rumen protected choline can be effective materials to improve the milk production, milk fat and lactose without little change on in vitro ruminal fermentation.

Effects of using different roughages in the total mixed ration inoculated with or without coculture of Lactobacillus acidophilus and Bacillus subtilis on in vitro rumen fermentation and microbial population

  • Miguel, Michelle;Mamuad, Lovelia;Ramos, Sonny;Ku, Min Jung;Jeong, Chang Dae;Kim, Seon Ho;Cho, Yong Il;Lee, Sang Suk
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.642-651
    • /
    • 2021
  • Objective: This study aimed to determine the effects of different roughages in total mixed ration (TMR) inoculated with or without coculture of Lactobacillus acidophilus (L. acidophilus) and Bacillus subtilis (B. subtilis) on in vitro rumen fermentation and microbial population. Methods: Three TMRs formulations composed of different forages were used and each TMR was grouped into two treatments: non-fermented TMR and fermented TMR (F-TMR) (inoculated with coculture of L. acidophilus and B. subtilis). After fermentation, the fermentation, chemical and microbial profile of the TMRs were determined. The treatments were used for in vitro rumen fermentation to determine total gas production, pH, ammonianitrogen (NH3-N), and volatile fatty acids (VFA). Microbial populations were determined by quantitative real-time polymerase chain reaction (PCR). All data were analyzed as a 3×2 factorial arrangement design using the MIXED procedure of Statistical Analysis Systems. Results: Changes in the fermentation (pH, lactate, acetate, propionate, and NH3-N) and chemical composition (moisture, crude protein, crude fiber, and ash) were observed. For in vitro rumen fermentation, lower rumen pH, higher acetate, propionate, and total VFA content were observed in the F-TMR group after 24 h incubation (p<0.05). F-TMR group had higher acetate concentration compared with the non-fermented group. Total VFA was highest (p<0.05) in F-TMR containing combined forage of domestic and imported source (F-CF) and F-TMR containing Italian ryegrass silage and corn silage (F-IRS-CS) than that of TMR diet containing oat, timothy, and alfalfa hay. The microbial population was not affected by the different TMR diets. Conclusion: The use of Italian ryegrass silage and corn silage, as well as the inoculation of coculture of L. acidophilus and B. subtilis, in the TMR caused changes in the pH, lactate and acetate concentrations, and chemical composition of experimental diets. In addition, F-TMR composed with Italian ryegrass silage and corn silage altered ruminal pH and VFA concentrations during in vitro rumen fermentation experiment.

Assessment of Anti-nutritive Activity of Tannins in Tea By-products Based on In vitro Rumen Fermentation

  • Kondo, Makoto;Hirano, Yoshiaki;Ikai, Noriyuki;Kita, Kazumi;Jayanegara, Anuraga;Yokota, Hiro-Omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.11
    • /
    • pp.1571-1576
    • /
    • 2014
  • Nutritive values of green and black tea by-products and anti-nutritive activity of their tannins were evaluated in an in vitro rumen fermentation using various molecular weights of polyethylene glycols (PEG), polyvinyl pyrrolidone (PVP) and polyvinyl polypyrrolidone as tannin-binding agents. Significant improvement in gas production by addition of PEG4000, 6000 and 20000 and PVP was observed only from black tea by-product, but not from green tea by-product. All tannin binding agents increased $NH_3$-N concentration from both green and black tea by-products in the fermentation medium, and the PEG6000 and 20000 showed relatively higher improvement in the $NH_3$-N concentration. The PEG6000 and 20000 also improved in vitro organic matter digestibility and metabolizable energy contents of both tea by-products. It was concluded that high molecular PEG would be suitable to assess the suppressive activity of tannins in tea by-products by in vitro fermentation. Higher responses to gas production and $NH_3$-N concentration from black tea by-product than green tea by-product due to PEG indicate that tannins in black tea by-product could suppress rumen fermentation more strongly than that in green tea by-product.

Comparison of in vitro ruminal fermentation incubated with different levels of Korean corn grains with total mixed ration as a basal

  • Hamid, Muhammad Mahboob Ali;Park, Ha Young;Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.3
    • /
    • pp.419-427
    • /
    • 2018
  • The present study was conducted to investigate the effect of different levels of Korean corn grain on in vitro ruminal fermentation with total mixed ration (TMR) as a basal feed. Three ruminal cannulated Holstein steers (Body Weight $479{\pm}33.0kg$) were used as rumen fluid donors. Treatments for in vitro fermentation were TMR only (control, 3.0 g), TMR substituted partially with high level (HC, TMR 1.5 and corn 1.5 g), and with low level of Korean corn grain (LC, TMR 2.25 and corn 0.75 g), respectively. To measure in vitro ruminal pH, gas production, ammonia N and volatile fatty acids (VFA), the in vitro fermentation incubation was triplicated at $39^{\circ}C$, 120 rpm for 0, 1, 3, 6, 12, 24 and 48 h, respectively. Mean ruminal pH was significantly lower (p < 0.05) for HC than control. Changes in rumen pH was rather similar between the groups till 6 h after incubation, but the lowest pH for HC (pH 5.10) appeared at 48 h compared with control and LC. Total gas production was tended (p < 0.09) to be higher and ammonia N was significantly lower (p < 0.05) for HC than control and LC. Total VFA was higher (p < 0.05) for HC and LC than control but no differences appeared between HC and LC. Overall, the present data indicate that feeding different levels of Korean domestic corn grain may lead to high and sustainable starch degradation in the rumen.

Nutritional evaluation of total mixed rations containing rice grain in an in vitro rumen fermentation system

  • Yang, Sung Jae;Kim, Han Been;Moon, Joon Beom;Kim, Na Eun;Park, Joong Kook;Park, Byung Ki;Lee, Se Young;Seo, Jakyeom
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.741-748
    • /
    • 2018
  • This study was conducted to evaluate the nutritional value of total mixed rations (TMR) containing rice grain in an in vitro rumen fermentation system. Three types of grains (corn, wheat, and rice), timothy, and soybean meal (SBM) were used to prepare the experimental TMR: Corn TMR, Wheat TMR, and Rice TMR. The rumen fermentation characteristics of all the experimental TMRs were evaluated by an in vitro anaerobic system using rumen fluid for 24 and 48 h. The digestibility of the nutrients (dry matter [DM], crude protein [CP], and neutral detergent fiber [NDF]), pH, ammonia ($NH_3-N$), and volatile fatty acids (VFA) were determined. Rice TMR showed a higher DM digestibility than that of the Corn TMR at 48 h (p < 0.05). In all treatments, the CP digestibility was more than 80% at 48 h, but no significant differences were observed among the treatments. The NDF digestibility tended to be the lowest in the Wheat TMR (p = 0.06), and the pH tended to be the lowest in the Rice TMR (p = 0.09) among the treatments for the 48 h incubation. The Wheat TMR had the highest $NH_3-N$ concentration among the treatments (p < 0.01). Rice TMR had a lowest total VFA concentration among the treatments (p = 0.05) at 24 h, but no significant differences were observed at 48 h. Based on this in vitro result, it was considered that a rice grain has the potential to replace conventional grain ingredients when the TMR was formulated.

Effects of rumen-protected amino acid prototypes on rumen fermentation characteristics in vitro

  • Gyeongjin, Kim;Tabita Dameria, Marbun;Jinhyun, Park;Sang Moo, Lee;Hong Gu, Lee;Jun Ok, Moon;Jin Seung, Park;Eun Joong, Kim
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.4
    • /
    • pp.669-679
    • /
    • 2021
  • This study was conducted to evaluate the effects of rumen-protected amino acid (RPAA) prototypes, which were chemically synthesized, on in vitro rumen fermentation and protection rate outcomes. Several RPAA prototypes were incubated with timothy hay and concentrate. Treatments consisted of 1) control (CON; no RPAA prototype supplement), and prototypes of 2) 0.5% RP-methionine (RPMet), 3) 0.5% RP-tryptophan (RPTrp), 4) 0.5% RP-valine (RPVal), 5) 0.5% RP-phenylalanine (RPPhe), 6) 0.5% RP-leucine (RPLeu), 7) 0.5% RP-histidine (RPHis), 8) 20% RPMet, and 9) 20% RPTrp (w·w-1 feed). The inoculum (50 mL) prepared with rumen fluid and McDougall's buffer (1 : 4) was dispensed in individual serum bottles and was anaerobically incubated for 0, 6, and 24 h at 39℃ in triplicate. The dry matter degradability did not differ among the groups, except for the 20% RPMet and the 20% RPTrp treatments at 6 and 24 h. The total volatile fatty acid concentration in the 20% RPMet was higher (p < 0.05) than the rest of the groups at 6 h, and 20% RPMet showed the highest molar proportion of acetate, whereas the lowest proportion of propionate was found at 6 h (p < 0.05). The protection rate of the RPAA prototypes ranged from 29.85 to 109.21%. at 24 h. In conclusion, the chemically synthesized RPAA prototypes studied here had no detrimental effects on rumen fermentation parameters. Further studies using animal models are needed for more accurate evaluations of the effectiveness of RPAA.

In vitro Methanogenesis and Fermentation of Feeds Containing Oil Seed Cakes with Rumen Liquor of Buffalo

  • Kumar, Ravindra;Kamra, D.N.;Agarwal, Neeta;Chaudhary, L.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.8
    • /
    • pp.1196-1200
    • /
    • 2007
  • Eight feeds (mixture of wheat straw and oil seed cakes in 3:1 ratio) were evaluated for methane emission and fermentation pattern with buffalo rumen liquor as inoculum in an in vitro gas production test. The cakes tested were groundnut cake (GNC), soybean cake (SBC), mustard seed cake (MSC), cotton seed cake (CSC), karanj seed cake expeller extracted (KCEE), karanj seed cake solvent extracted (KCSE), caster bean cake expeller extracted (CBCEE) and caster bean cake solvent extracted (CBCSE). The gas production (ml/g dry matter) was significantly higher with SBC and MSC followed by CSC, GNC, KCSE, KCEE, CBCSE and was the lowest with CBCEE. Methane emission was significantly lower with KCEE, KCSE, CBCEE, CBCSE (20.32- 22.43 ml/g DM) than that with SBC, GNC, CSC (27.34-31.14 ml/g DM). Mustard seed cake was in-between the two groups of oil cakes in methane production. In vitro true digestibility was highest with SBC followed by GNC, CSC, MSC, KCSE, KCEE, CBCSE and CECEE. Ammonia nitrogen level was positively correlated with the amount of protein present in the cake. Total holotrich protozoa were significantly higher with SBC, whereas, large spirotrich protozoa tended to be lower than with other cakes. The counts of small spirotrich and total protozoa were similar with all the cakes. Total volatile fatty acid production and acetate to propionate ratio were significantly higher with SBC and significantly lower with KCEE as compared to the other cakes. Among the conventional oil cakes tested in the present experiment (GNC, SBC, MSC and CSC), mustard seed cake-based feed produced the minimum methane without affecting other fermentation characteristics adversely.