• 제목/요약/키워드: In vitro Gas Production

검색결과 259건 처리시간 0.028초

Response of Growth Performance, Cecal Fermentation Traits and In vitro Gas Production to Substitution of Soyhulls for Lignified Fiber in Rabbit Diets

  • Chang, Ying;Qin, Yinghe;Xiong, Yiqiang;Du, Yuchuan;Meng, Qingxiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권1호
    • /
    • pp.45-51
    • /
    • 2007
  • A growth trial (Expt. 1) and an in vitro fermentation experiment (Expt. 2) were conducted to determine the response of growth performance, cecal fermentation characteristics and in vitro gas production to incremental levels of substitution of digestible fiber for lignified fiber in the diet of weaned rabbits. Three diets, formulated by substituting soyhulls (SH; used as digestible fiber source) for soybean straw (used as lignified fiber source) at substitution levels of 0, 25 and 50%, were used in a factorial design. In the growth trial (Expt. 1), increasing levels of SH substitution resulted in a quadratic increase in daily body weight gain rate (p<0.04) and feed conversion efficiency (p<0.02), but in a numerical decrease in dietary DM intake (p=0.15). When SH were included in the diet at 25% substitution level, rabbits had the highest rate of liveweight gain and feed conversion efficiency. As SH substitution level increased, pH values and ammonia-N of cecal contents linearly (p<0.001) decreased, but total VFA concentration linearly (p<0.03) increased. With incremental levels of SH substitution, the percentage of acetate and butyrate linearly (p<0.05) reduced, but the percentage of propionate and minor acids linearly (p<0.03) increased. Increasing the SH substitution levels tended to increase incidence of diarrhea. In the in vitro fermentation experiment (Expt. 2), regardless of origin of substrates fermented, increasing SH substitution level resulted in increased maximal gas production (p<0.001) and shortened gas production lag time, but had no effect on gas production rate (p>0.2). These observations suggest that incrementally feeding SH to rabbits could stimulate their cecal microbial activity, allowing cecal fermentation to shift towards favoring fiber digestion. In conclusion, digestible fiber from soyhulls may partially substitute for more lignified fiber, soybean straw, without having an adverse effect on cecal fermentative and microbial activity and growth performance. For growing rabbits, about 73% of total dietary NDF should be supplied by effective NDF, the remainder could come from digestible NDF, such as soyhulls.

Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle

  • Tagawa, Shin-ichi;Holtshausen, Lucia;McAllister, Tim A;Yang, Wen Zhu;Beauchemin, Karen Ann
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권4호
    • /
    • pp.479-485
    • /
    • 2017
  • Objective: The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Methods: Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. Results: In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. Conclusion: We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

Effect of Tannin and Species Variation on In vitro Digestibility, Gas, and Methane Production of Tropical Browse Plants

  • Gemeda, Belete Shenkute;Hassen, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권2호
    • /
    • pp.188-199
    • /
    • 2015
  • Nineteen tanniferous browse plants were collected from South Africa to investigate their digestibility, gas production (GP) characteristics and methane production. Fresh samples were collected, dried in forced oven, and ground and analyzed for nutrient composition. In vitro GP and in vitro organic matter digestibility (IVOMD) were determined using rumen fluid collected, strained and anaerobically prepared. A semi-automated system was used to measure GP by incubating the sample in a shaking incubator at $39^{\circ}C$. There was significant (p<0.05) variation in chemical composition of studied browses. Crude protein (CP) content of the species ranged from 86.9 to 305.0 g/kg dry matter (DM). The neutral detergent fiber (NDF) ranged from 292.8 to 517.5 g/kg DM while acid detergent fiber (ADF) ranged from 273.3 to 495.1 g/kg DM. The ash, ether extract, non-fibrous carbohydrate, neutral detergent insoluble nitrogen, and acid detergent insoluble nitrogen and CP were negatively correlated with methane production. Methane production was positively correlated with NDF, ADF, cellulose and hemi-cellulose. Tannin decreased GP, IVOMD, total volatile fatty acid and methane production. The observed low methanogenic potential and substantial ammonia generation of some of the browses might be potentially useful as rumen manipulating agents. However, a systematic evaluation is needed to determine optimum levels of supplementation in a mixed diet in order to attain a maximal depressing effect on enteric $CH_4$ production with a minimal detrimental effect on rumen fermentation of poor quality roughage based diet.

Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars

  • Wang, Chunmei;Hou, Fujiang;Wanapat, Metha;Yan, Tianhai;Kim, Eun Joong;Scollan, Nigel David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권8호
    • /
    • pp.1242-1251
    • /
    • 2020
  • Objective: The 3×3 factorial arrangement was used to investigate if either high water-soluble carbohydrates (WSC) cultivars or suitable time of day that the grass cut could improve nutrient values and in vitro fermentation characteristics. Methods: The 3 cultivars were mowed at 3 diurnal time points and included a benchmark WSC ryegrass cultivar 'Premium', and 2 high WSC cultivars AberAvon and AberMagic, which contained, on average, 157, 173, and 193 g/kg dry matter (DM) of WSC, and 36.0, 36.5, and 34.1 g/kg DM of N during 7th regrowth stage, respectively. The fermentation jars were run at 39℃ with gas production recorded and sampled at 2, 5, 8, 11, 14, 17, 22, 28, 36, and 48 h. The rumen liquid was collected from 3 rumen fistulated cows grazing on ryegrass pasture. Results: High WSC cultivars had significantly greater WSC content, in vitro DM digestibility (IVDMD) and total gas production (TGP), and lower lag time than Premium cultivar. Methane production for AberMagic cultivar containing lower N concentration was marginally lower than that for AberAvon and Premium cultivars. Grass cut at Noon or PM contained greater WSC concentration, IVDMD and TGP, and lower N and neutral detergent fiber (NDF) contents, but CH4 production was also increased, compared to grass cut in AM. Meanwhile, the effects of diurnal cutting time were influenced by cultivars, such as in vitro CH4 production for AberMagic was not affected by cutting time. The IVDMD and gas production per unit of DM incubated were positively related to WSC concentration, WSC/N and WSC/NDF, respectively, and negatively related to N and NDF concentrations. Conclusion: These results imply either grass cut in Noon or PM or high WSC cultivars could improve nutrient values, IVDMD and in vitro TGP, and that AberMagic cultivar has a slightly lower CH4 production compared to AberAvon and Premium. Further study is necessary to determine whether the increase of CH4 production response incurred by shifting from AM cutting to Noon and/or PM cutting could be compensated for by high daily gain from increased WSC concentration and DM digestibility.

Methane Production Potential of Feed Ingredients as Measured by In Vitro Gas Test

  • Lee, H.J.;Lee, S.C.;Kim, J.D.;Oh, Y.G.;Kim, B.K.;Kim, C.W.;Kim, K.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제16권8호
    • /
    • pp.1143-1150
    • /
    • 2003
  • This study was conducted to investigate in vitro methane production of feed ingredients and relationship between the content of crude nutrients and methane production. Feed ingredients (total 26) were grouped as grains (5 ingredients), brans and hulls (8), oil seed meals (9) roughages (3), and animal by-product (1) from their nutrient composition and their methane production protential were measured by in vitro gas test. Among the groups, the in vitro methane productions for both 6 and 24 h incubation were highest in grains, followed by brans and hulls, oil meals and roughages, animal byproducts. Within the group of grains, methane production from wheat flour was the highest, followed by wheat, corn, tapioca, and then oat. Within the brans and hulls, soybean hull showed the highest methane production and cotton seed hull, the lowest. Methane production from oil meals was lower compared with grains and brans and hulls, and in decreasing order production from canola meal was followed by soybean meal, coconut meal, and corn germ meal (p<0.01). Three ingredients were selected and the interactions among feed ingredients were evaluated for methane production. Correlation coefficient between measured and estimated values of the combinations were 0.91. Methane production from each feed ingredient was decreased with increasing amount of crude fiber (CF), protein (CP) and ether extract (EE), whereas positive relationship was noted with the concentrations of N-free extract (NFE). The multiple regression equation (n=134) for methane production and nutrient concentrations was as follows. Methane production (ml/0.2 g DM)=(0.032${\times}$CP)-(0.057${\times}$EE)-(0.012${\times}$CF)+(0.124${\times}$NFE) (p<0.01; $R^2$=0.929). Positive relationship was noted for CP and NFE and negative relationship for CF and EE. It seems possible to predict methane production potential from nutritional composition of the ingredients for their effective application on formulating less methane emitting rations.

Rumen fermentation, methane production, and microbial composition following in vitro evaluation of red ginseng byproduct as a protein source

  • Hamid, Muhammad Mahboob Ali;Moon, Joonbeom;Yoo, Daekyum;Kim, Hanbeen;Lee, Yoo Kyung;Song, Jaeyong;Seo, Jakyeom
    • Journal of Animal Science and Technology
    • /
    • 제62권6호
    • /
    • pp.801-811
    • /
    • 2020
  • The main objective of this in vitro study was to evaluate red ginseng byproduct (RGP) as a protein resource and its effects on rumen fermentation characteristics, microflora, CO2, and CH4 production in ruminants. Four treatments for in vitro fermentation using buffered rumen fluid over a 48 h incubation period were used: 1, RGP; 2, corn gluten feed (CGF); 3, wheat gluten (WG); and 4, corn germ meal. In vitro dry matter digestibility (IVDMD), in vitro neutral detergent fiber digestibility (IVNDFD), in vitro crude protein digestibility (IVCPD), volatile fatty acids, pH, and ammonia nitrogen (NH3-N) were estimated after 48 h incubation. Gas production was investigated after 3, 6, 12, 24, 36 and 48 h. The CO2 and CH4 were evaluated after 12, 24, 36, and 48 h. A significant difference in total gas production and CO2 emissions was observed (p < 0.01) at all incubation times. CH4 production in RGP were higher (p < 0.05) than that in other treatments but a higher CH4 portion in the total gas production was observed in WG (p < 0.05) at 48 h incubation. The IVDMD, IVNDFD, and IVCPD of RGP was lower than those of other conventional ingredients (p < 0.01). The RGP had the lowest NH3-N value among the treatments (p < 0.01). The RGP also had the lowest total VFA concentration (p < 0.01), but presented the highest acetate proportion and acetate to propionate ratio among the treatments (both, p < 0.01). The abundance of Prevotella ruminicola was higher in RGP than in WG (p < 0.01), whereas RGP has lower methanogenic archaea (p < 0.01). In conclusion, based on the nutritive value, IVDMD, low NH3-N, and decreased methanogenic archaea, RGP inclusion as a protein source in ruminant diets can be an option in replacing conventional feed sources.

Effects of Bacterial Fraction and Proportion of Silage and Concentrate on Rumen Fermentation and Gas Production Profile

  • Lee, Sang S.;Chang, M.B.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권5호
    • /
    • pp.643-647
    • /
    • 2004
  • An in vitro experiment was carried out to investigate effects of solid associated (SAB) and liquid associated bacteria (LAB) and the type of incubation substrate on ruminal fermentation and gas production profiles. Bacterial fraction did not influence total numbers of bacteria. Gas production degradation parameters were significantly influenced by bacterial fraction and type of substrate (p<0.05). There was significant interaction between bacterial fraction and type of substrate in gas production (p<0.01). Total VFA concentration and acetic and propionic acid ratio were also influenced by bacterial fraction and type of substrate with little differences in individual VFA concentration.

In vitro fermentation profiles of different soybean oligosaccharides and their effects on skatole production and cecal microbiota of broilers

  • Zhu, Xin;Xu, Miao;Liu, Haiying;Yang, Guiqin
    • Animal Bioscience
    • /
    • 제35권8호
    • /
    • pp.1195-1204
    • /
    • 2022
  • Objective: The objective of this study was to investigate the in vitro fermentation profiles of different soybean oligosaccharides (SBOs) and their effects on skatole production and cecal microbiota of broilers. Methods: Five SBOs with varying main component contents were fermented using an in vitro batch incubation inoculated with broiler cecal microbiota. Gas production was recorded automatically, skatole, indole and short-chain fatty acids (SCFAs) were determined using high-performance liquid chromatography, and microbial changes were analyzed using 16S DNA gene sequencing. Results: The addition of SBOs increased (p<0.05) gas production, suggesting bacterial growth-stimulating activities. In addition, the concentrations of indole were significantly (p<0.05) decreased after SBO supplementation, and SBO III, with higher sucrose and stachyose contents, decreased (p<0.05) the skatole level. Our results also revealed that the fermentation of SBOs by cecal microbiota produced (p<0.05) SCFAs, which were dominated by propionic acid, butyrate acid and lactic acid compared to the control. In addition, SBO III increased (p<0.05) the abundance of Firmicutes and Subdoligranulum and decreased that of Bacteroides. Conclusion: These results suggest that SBOs with higher sucrose and stachyose contents are promising prebiotics in modulating gut microbiota and reducing odor emission in broilers.

Differences in Microbial Activities of Faeces from Weaned and Unweaned Pigs in Relation to In vitro Fermentation of Different Sources of Inulin-type Oligofructose and Pig Feed Ingredients

  • Shim, S.B.;Verdonk, J.M.A.J.;Pellikaan, W.F.;Verstegen, W.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권9호
    • /
    • pp.1444-1452
    • /
    • 2007
  • An in vitro experiment was conducted to evaluate the differences in microbial activity of five faecal inocula from weaned pigs and one faecal inoculum from unweaned pigs in combination with 6 substrates. The substrates tested were negative control diet, corn, soybean meal, oligofructose (OF), ground chicory roots and a mixture (60% chicory pulp and 40% OF). The inocula used were derived from pigs fed either a corn-soy based diet without antibiotics (NCON), the NCON diet supplemented with oligofructose (OF), a mixture of chicory pulp (40%) and OF (60%) (MIX), ground chicory roots (CHR) or the NCON diet supplemented with antibiotics (PCON). The cumulative gas production measured fermentation kinetics and end products, such as total gas production, ammonia and volatile fatty acids, were also determined. Both the substrate and the inoculum significantly affected the fermentation characteristics. The cumulative gas production curve showed that different substrates caused more differences in traits of fermentation kinetics than the different inocula. Inocula of weaned pigs gave a significantly higher VFA production compared to the inoculum from unweaned animals, whilst the rate of fermentation and the total gas produced did not differ. OF showed the highest fermentation kinetics and the lowest $NH_3$, pH and OM loss compared to other substrates. It was concluded that the microbial activity was significantly affected by substrate and inoculum. Inoculum from weaned pigs had more potential for microbial fermentation of the carbohydrate ingredients and oligofructose than that of unweaned pigs. A combination of high and low polymer inulin may be more beneficial to the gut ecosystem than using high- or low-polymer inulin alone.

Saccharomyces cerevisiae Live Cells Decreased In vitro Methane Production in Intestinal Content of Pigs

  • Gong, Y.L.;Liao, X.D.;Liang, J.B.;Jahromi, M.F.;Wang, H.;Cao, Z.;Wu, Y.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권6호
    • /
    • pp.856-863
    • /
    • 2013
  • An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane ($CH_4$) production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress $CH_4$ production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells), control (no live yeast cells) and yeast (YST) supplementation groups (supplemented with live yeast cells, YST1 or YST2). The yeast cultures contained $1.8{\times}10^{10}$ cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc${\times}$Landrace${\times}$Yorkshire pigs, mixed with a phosphate buffer (1:2), and incubated anaerobically at $39^{\circ}C$ for 24 h using 500 mg substrate (dry matter (DM) basis). Total gas and $CH_4$ production decreased (p<0.05) with supplementation of yeast. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD) and total volatile fatty acids (VFA) concentration increased (p<0.05) in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05), but that of acetate decreased (p<0.05), which led to a decreased (p<0.05) acetate: propionate (A: P) ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05) with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05) with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro $CH_4$ production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic bacteria, both of which serve as a competitive pathway for the available H2 resulting in the reduction of methanogenic archaea.