• Title/Summary/Keyword: In vitro Dry Matter Digestibility

Search Result 332, Processing Time 0.03 seconds

Ensiled or Oven-dried Green Tea By-product as Protein Feedstuffs: Effects of Tannin on Nutritive Value in Goats

  • Kondo, Makoto;Kita, Kazumi;Yokota, Hiro-omi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.880-886
    • /
    • 2007
  • Ensiled or oven-dried green tea by-products (GTB) were evaluated in goats for their nutritive potential as protein feedstuffs based on in vitro and in vivo digestibility. To elucidate the effects of tea tannin on in vitro digestibility, polyethylene glycol (PEG) was used as a tannin binding agent. Both ensiled and dried GTB contained 31.9 to 32.6% of crude protein (CP) on a dry matter (DM) basis. Phenolics and tannins in soybean meal and alfalfa hay were low or not detected, but they were high in both ensiled and dried GTB (7.3-10.1% DM as total extractable tannins). In vitro protein digestibility in the rumen ranked: soybean meal>alfalfa hay cube>ensiled GTB = dried GTB. The protein digestibility post-ruminally of these feedstuffs showed a similar trend to that in the rumen, but the digestibility of ensiled GTB was significantly higher than that of dried GTB. Addition of PEG improved the in vitro protein digestibility of both kinds of GTB in the rumen and post-ruminally, indicating that tannins suppressed the potential protein digestibility of GTB. The increased protein digestibility by PEG addition was not significantly different between ensiled and dried GTB in the rumen, but the percentage increment of ensiled GTB was higher than dried GTB post-ruminally. In the in vivo digestibility trial, ensiled and dried GTB were offered to goats as partial substitutes for soybean meal and alfalfa hay cubes. Offering both GTB to goats as 5-10% on a DM basis did not affect nutrient digestibility, ruminal pH, volatile fatty acids, and ammonia concentration. However, the eating time of the GTB-incorporated diet was longer than that of the basal diet. It took 1.4 and 1.6 times longer than the control diet, to eat the diet completely when GTB silage was offered at 5 and 10% levels, respectively, of the total diet. These results show that ensiled and dried GTB are useful as partial substitutes for soybean meal and alfalfa hay cubes for goats with respect to nutritive value. Because of lessened palatability, it is recommended that GTB be incorporated into the diet at 5% on a DM basis.

The Effects of a Fermentation Product by Aspergillus oryzae on the in vitro Digestibilities of Dry Matter, Fiber and Protein and pH in the Fermentation Fluid of Diets for Dairy Cows (착유우 사료에 대한 Aspergillus oryzae 발효물질 첨가가 in vitro 건물, 섬유소 및 단백질 소화율과 발효액의 pH에 미치는 영향)

  • Myung, Yoon-Ah;Park, Duk-Sub;Lee, Soo-Kee;Park, Jong-Soo;Kim, Yong-Kook
    • Korean Journal of Agricultural Science
    • /
    • v.29 no.2
    • /
    • pp.20-34
    • /
    • 2002
  • This study was conducted to examine the effects of an Aspergillus oryzae fermentation culture on the in vitro digestibilities of dry matter, crude fiber, acid detergent fiber (ADF), neutral detergent fiber (NDF), crude protein, and pH in in vitro experiment of diets for dairy cows. A fungal species, Aspergillus oryzae was supplied by Korea Research Institute of Bioscience and Biotechnology, Daejeon, Korea (KCTC 1229). The experimental diets were commercial compound feed (concentrate) and total mixed ration (TMR) for lactating cows, of which chemical analyses were determined at Research and Development Institute, Woosung Feed Co., Ltd., while the digestibilities were done at the laboratory of Chungnam National University. Aspergillus oryzae culture products were added to compound feed and TMR at the rate of 0, 1.0, 2.0, 3.0% respectively. The experimental diet with the rumen fluid sampled from Holstein fresian milking cows were used and digested for 24 hrs, 48hrs and 72hrs in the shaking incubator. The residues of the digesta were digested for 48hrs in the incubator in which put 30ml of 0.1N HCl with 0.2% pepsin at $39^{\circ}C$. The final precipitates were dried for 48hrs in the drier at $60^{\circ}C$. These experimental procedures were triplicated to determine the in vitro digestibility of dry matter, crude fiber, ADF, NDF, crude protein and pH. Compared to control diet, not added Aspergillus oryzae, the DM digestibility of fungal diets were improved 2.1%(63.1%), 9.7%(68.5%) and 9.0%(68.0%) for 24 hour fermentation in compound feed while 4.8%(60.0%), 6.4%(61.1%) and 2.9%(58.8%) in TMR. On the contrary, for 48 hour and 72 hour digestibilities, the effects of Aspergillus oryzae culture on the digestibility of dry matter were relatively lowered compared to 24 hour digestibility. Referring to the digestibility of dietary fiber, Aspergillus oryzae was believed to significantly improve digestibilities of crude fiber, ADF and NDF. Those were increased up to 13.3%(53.3%) for 24 hour fermentation, while 2.4%(54.6%) for 3.0% added for 72 hour fermentation in compound feed. However, there were no significant differences among the treatments for the inclusion rate of Aspergillus oryzae, even though the more inclusion rate, the better digestibility. The protein digestibilities were significantly improved from 0.4%(79.7%) to 9.4%(71.8%) by adding Aspergillus oryzae into compound feed. However, there were no significant differences between the two experimental diets, 2.0% and 3.0% Aspergillus oryzae included diets. In case of TMR, the protein digestibilities were significantly improved from 4.0%(70.4%) to 6.3%(65.1%) by adding Aspergillus oryzae. However, there were no significant differences between the two experimental diets, 2.0% and 3.0% Aspergillus oryzae included diets. In this study, there were no significant differences among the treatments in pH. On the contrary, there were slightly decrease in pH by adding Aspergillus oryzae into experimental diets but not significant. Summarizing the results of this examination, Aspergillus oryzae fermentation culture is believed to improve the digestibilities of dry matter, fiber and crude protein in cattle diets. However, more detailed research for the mechanism of the fungal culture is required to improve ruminal environment.

  • PDF

Chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with microbial additives

  • Gao, Jun Lei;Wang, Peng;Zhou, Chang Hai;Li, Ping;Tang, Hong Yu;Zhang, Jia Bao;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1854-1863
    • /
    • 2019
  • Objective: To effectively use corn stover resources as animal feed, we explored the chemical composition and in vitro digestibility of corn stover during field exposure and the fermentation characteristics of silage prepared with lactic acid bacteria (LAB) and cellulase. Methods: Corn ears including the cobs and shucks were harvested at the ripe stage. The corn stover was exposed in the field under natural weather conditions. Silages were prepared after 0, 2, 4, 7, 15, 30, and 60 d of exposure. Corn stover was chopped into approximately 1 to 2 cm lengths and then packed into 5 liter plastic silos. The ensiling density was $550.1{\pm}20.0g/L$ of fresh matter, and the silos were kept at room temperature ($10^{\circ}C$ to $25^{\circ}C$). Silage treatments were designed as follows: without additives (control), with LAB, with cellulase, and with LAB+ cellulase. After 45 d of fermentation, the silos were opened for chemical composition, fermentation quality and in vitro digestion analyses. Results: After harvest, corn stover contained 78.19% moisture, 9.01% crude protein (CP) and 64.54% neutral detergent fiber (NDF) on a dry matter (DM) basis. During field exposure, the DM, NDF, and acid detergent fiber (ADF) contents of corn stover increased, whereas the CP and water-soluble carbohydrate contents and in vitro digestibility of the DM and CP decreased (p<0.05). Compared to the control silage, cellulase-treated silage had lower (p<0.05) NDF and ADF contents. The pH values were lower in silage treated with LAB, cellulase, or LAB+cellulase, and lactic acid contents were higher (p<0.05) than those of the control. Silage treated with cellulase or LAB+cellulase improved (p<0.05) the in vitro DM digestibility (IVDMD) compared to that of the control or LAB-treated silage. Conclusion: Corn stover silage should be prepared using fresh materials since stover nutrients are lost during field exposure, and LAB and cellulase can improve silage fermentation and IVDMD.

Replacement of corn with rice grains did not alter growth performance and rumen fermentation in growing Hanwoo steers

  • Yang, Sungjae;Kim, Byeongwoo;Kim, Hanbeen;Moon, Joonbeom;Yoo, Daekyum;Baek, Youl-Chang;Lee, Seyoung;Seo, Jakyeom
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.2
    • /
    • pp.230-235
    • /
    • 2020
  • Objective: This study was realized to evaluate the nutritional value of rice grains as a replacement for corn grains in the diet of growing Hanwoo steers. Methods: Two experimental diets were prepared: i) Corn total mixed ration (TMR) consisting of 20% corn grains and ii) Rice TMR consisting of 20% rice grains, in a dry matter (DM) basis. These treatments were used for in vitro rumen fermentation and in vivo growth trials. In the rumen fermentation experiment, the in vitro DM digestibility (IVDMD), in vitro crude protein digestibility (IVCPD), in vitro neutral detergent fiber digestibility, pH, ammonia nitrogen, and volatile fatty acids (VFA) were estimated at 48 h, and the gas production was measured at 3, 6, 12, 24, and 48 h. Twenty four growing Hanwoo steers (9 months old; body weight [BW]: 259±13 kg) were randomly divided into two treatment groups and the BW, dry matter intake (DMI), average daily gain (ADG), and feed conversion ratio (FCR) were measured. Results: The in vitro experiment showed that the IVDMD, IVCPD, and VFA production of the Rice TMR were higher than those of the Corn TMR (p<0.05). The growth trial showed no differences (p>0.05) in the final BW, ADG, DMI, and FCR between the two TMRs. Conclusion: The use of rice grains instead of corn grains did not exhibit any negative effects on the rumen fermentation or growth performance, thereby rice grains with a DM of less than 20% could be used as a starch source in the diet of growing steers.

Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars

  • Wang, Chunmei;Hou, Fujiang;Wanapat, Metha;Yan, Tianhai;Kim, Eun Joong;Scollan, Nigel David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1242-1251
    • /
    • 2020
  • Objective: The 3×3 factorial arrangement was used to investigate if either high water-soluble carbohydrates (WSC) cultivars or suitable time of day that the grass cut could improve nutrient values and in vitro fermentation characteristics. Methods: The 3 cultivars were mowed at 3 diurnal time points and included a benchmark WSC ryegrass cultivar 'Premium', and 2 high WSC cultivars AberAvon and AberMagic, which contained, on average, 157, 173, and 193 g/kg dry matter (DM) of WSC, and 36.0, 36.5, and 34.1 g/kg DM of N during 7th regrowth stage, respectively. The fermentation jars were run at 39℃ with gas production recorded and sampled at 2, 5, 8, 11, 14, 17, 22, 28, 36, and 48 h. The rumen liquid was collected from 3 rumen fistulated cows grazing on ryegrass pasture. Results: High WSC cultivars had significantly greater WSC content, in vitro DM digestibility (IVDMD) and total gas production (TGP), and lower lag time than Premium cultivar. Methane production for AberMagic cultivar containing lower N concentration was marginally lower than that for AberAvon and Premium cultivars. Grass cut at Noon or PM contained greater WSC concentration, IVDMD and TGP, and lower N and neutral detergent fiber (NDF) contents, but CH4 production was also increased, compared to grass cut in AM. Meanwhile, the effects of diurnal cutting time were influenced by cultivars, such as in vitro CH4 production for AberMagic was not affected by cutting time. The IVDMD and gas production per unit of DM incubated were positively related to WSC concentration, WSC/N and WSC/NDF, respectively, and negatively related to N and NDF concentrations. Conclusion: These results imply either grass cut in Noon or PM or high WSC cultivars could improve nutrient values, IVDMD and in vitro TGP, and that AberMagic cultivar has a slightly lower CH4 production compared to AberAvon and Premium. Further study is necessary to determine whether the increase of CH4 production response incurred by shifting from AM cutting to Noon and/or PM cutting could be compensated for by high daily gain from increased WSC concentration and DM digestibility.

Effect of storage time and the level of formic acid on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage

  • Zhao, Jie;Wang, Siran;Dong, Zhihao;Li, Junfeng;Jia, Yushan;Shao, Tao
    • Animal Bioscience
    • /
    • v.34 no.6
    • /
    • pp.1038-1048
    • /
    • 2021
  • Objective: The study aimed to evaluate the effect of storage time and formic acid (FA) on fermentation characteristics, epiphytic microflora, carbohydrate components and in vitro digestibility of rice straw silage. Methods: Fresh rice straw was ensiled with four levels of FA (0%, 0.2%, 0.4%, and 0.6% of fresh weight) for 3, 6, 9, 15, 30, and 60 d. At each time point, the silos were opened and sampled for chemical and microbial analyses. Meanwhile, the fresh and 60-d ensiled rice straw were further subjected to in vitro analyses. Results: The results showed that 0.2% and 0.6% FA both produced well-preserved silages with low pH value and undetected butyric acid, whereas it was converse for 0.4% FA. The populations of enterobacteria, yeasts, moulds and aerobic bacteria were suppressed by 0.2% and 0.6% FA, resulting in lower dry matter loss, ammonia nitrogen and ethanol content (p<0.05). The increase of FA linearly (p<0.001) decreased neutral detergent fibre and hemicellulose, linearly (p<0.001) increased residual water soluble carbohydrate, glucose, fructose and xylose. The in vitro gas production of rice straw was decreased by ensilage but the initial gas production rate was increased, and further improved by FA application (p<0.05). No obvious difference of FA application on in vitro digestibility of dry matter, neutral detergent fibre, and acid detergent fibre was observed (p>0.05). Conclusion: The 0.2% FA application level promoted lactic acid fermentation while 0.6% FA restricted all microbial fermentation of rice straw silages. Rice straw ensiled with 0.2% FA or 0.6% FA improved its nutrient preservation without affecting digestion, with the 0.6% FA level best.

THE EFFECT OF CELLULASE ADDITION ON NUTRITIONAL AND FERMENTATION QUALITY OF BARLEY STRAW SILAGE

  • Ridla, M.;Uchida, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.3
    • /
    • pp.383-388
    • /
    • 1993
  • Three experiments were conducted to investigate the effect of cellulose addition on high (Exp. I) and low (Exp. II and III) dry matter barley straw silages. In Exp. I : 1 kg barley straw + 16 g glucose + 600 g water + 0 g as control (E0G), + 2 g (E2G), + 4 g (E4G), + 6 g (E6G), and + 8 g (E8G) of cellulose as treatments were ensiled. In Exp. II and III, 10 g glucose was and was not added, respectively, into 2 kg barley straw + 0 g (E8W, E8T) of cellulose as treatments. Samples were stored for 10 (Exp. I) and 7 (Exp. II and III) months at $21^{\circ}C$. The effect of cellulose addition on the fermentation and breakdown of the polysaccharides component in the silos at ensiling occurred more markedly at low dry matter silages rather than at the high ones. All cellulose treated silages were well preserved (pH below 5 in Exp. I and below 4 in Exp. II and III), while lactic acid and ethanol concentration increased. The fibrous fraction (ADF, NDF, crude fiber, hemicellulose, and cellulose) significantly (p<0.01) decreased (except hemicellulose content in Exp. I) compared with corresponding untreated silages. In vitro dry matter digestibility values (IVDMD) were similar for all silages. The present study showed that cellulose addition improved the potential nutritional and fermentation quality of barley straw silage.

Effects of cultivar and harvest days after planting on dry matter yield and nutritive value of teff

  • Saylor, Benjamin A;Min, Doohong;Bradford, Barry J
    • Journal of Animal Science and Technology
    • /
    • v.63 no.3
    • /
    • pp.510-519
    • /
    • 2021
  • One of the most pressing issues facing the dairy industry is drought. In areas where annual precipitation is low, irrigation for growing feed presents the greatest water-utilization challenge for dairy producers. Here, we investigated the effects of cultivar and harvest days after planting (DAP) on dry matter (DM) yield and nutritive value of teff (Eragrostis tef), a warm-season annual grass native to Ethiopia that is well adapted to drought conditions. Eighty pots were blocked by location in a greenhouse and randomly assigned to four teff cultivars (Tiffany, Moxie, Corvallis, and Dessie) and to five harvest times (40, 45, 50, 55, or 60 DAP). Cultivars had no effect on DM yield and nutritive value. As harvest time increased from 40 to 60 DAP, DM yield and ash-free neutral detergent fiber (aNDFom) concentrations increased, while crude protein (CP) concentrations and in vitro NDF digestibility decreased. To assess carryover effects of time of harvest on yield and nutritive value, two additional cuttings were taken from each pot. Increasing first-cutting harvest time decreased CP concentrations in the second cutting and reduced DM yields in the second and third cutting. Harvesting teff between 45 and 50 DAP best optimized forage yield and nutritive value in the first and subsequent cuttings.

Effects of Corn Processing on In Vitro and In Situ Digestion of Corn Grain in Holstein Steers

  • Lee, S.Y.;Kim, W.Y.;Ko, J.Y.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.6
    • /
    • pp.851-858
    • /
    • 2002
  • This study was conducted to determine effects of whole (intact), coarsely-ground (4 mm), finely-ground (1 mm), steam-flaked and steam-flaked-ground (1 mm) corns on in vitro and in situ DM digestibilities and also in vitro fermentation characteristics. After 48 h incubation, in vitro dry matter digestibilities of whole, steam-flaked, coarsely-ground, steam-flaked-ground, and finely-ground corns were 6.79, 61.68, 76.48, 85.72 and 90.31%, respectively. Steam-flaked-ground corn showed the highest digestibility until 24 h incubation (p<0.01). After 48 h incubation, pH of whole corn decreased with a small range. However the values of pH of other media significantly decreased (p<0.01). The gas productions of finely-ground and steam-flaked-ground corns were higher than those of the other corns (p<0.01). After 24 h incubation, $NH_3$-N concentration of finely-ground and steam-flaked-ground corns increased rapidly. Total VFA was the highest in finely-ground corn, followed by steam-flaked-ground, steam-flaked, coarsely-ground and whole corns. Incorporating steam-flaked corn resulted in the highest propionate concentration (p<0.01) and the lowest acetate : propionate value (p<0.05). Finely-ground corn showed the highest in situ DM digestibility throughout the incubation period (p<0.01), followed by coarsely-ground, steam-flaked and whole corns, respectively. Overall, DM of whole corn was merely digested in vitro as well as in situ.

Effects of Bacterial Inoculants and Cutting Height on Fermentation Quality of Barley Silage

  • Lee, Hyuk Jun;Kim, Dong Hyeon;Amanullah, Sadar M.;Kim, Sam Churl;Song, Young Min;Kim, Hoi Yun
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.34 no.3
    • /
    • pp.163-168
    • /
    • 2014
  • This study was conducted to investigate the effects of bacterial inoculation (Lactobacillus plantarum) and cutting height on the chemical composition, fermentation characteristics and in vitro dry matter digestibility (IVDMD) in whole crop barley silage. Barley forage (Youngyang hybrid) was harvested at about 27% of dry matter (DM) level at two different cutting height (5 vs. 15 cm). And it was chopped to 5 cm length and treated with or without L. plantarum. Four replicates of each treatment were ensiled into 10 L mini silo (3 kg) for 100 days. After 100 days, bacterial inoculation decreased (p=0.001) DM content, while increased cutting height increased (p=0.002) DM in uninoculated silage. Crude protein (CP) concentration was decreased by increasing height in uninoculated silage (8.84 vs. 8.16) but increased in inoculated silage (8.19 vs. 8.99). Both neutral detergent fiber (NDF) (p<0.011) and acid detergent fiber (ADF) (p<0.004) were decreased by increasing cutting height of forage at harvest. The IVDMD and ammonia-N was increased (p=0.001) by increasing cutting height and inoculation, respectively. Lactic acid bacteria (LAB) was increased (p=0.002) in inoculated silage, but yeast count was decreased (p=0.026) in uninoculated silages. It is concluded that increased cutting height of forage at harvest could be useful to make a fibrous portion with increase of dry matter digestibility of silages.