• Title/Summary/Keyword: In situ protein degradation

Search Result 37, Processing Time 0.026 seconds

Influence of Varying Dry Matter and Molasses Levels on Berseem and Lucerne Silage Characteristics and Their In situ Digestion Kinetics in Nili Buffalo Bulls

  • Touqir, N.A.;Khan, M. Ajmal;Sarwar, M.;Nisa, M.;Lee, W.S.;Lee, H.J.;Kim, H.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.887-893
    • /
    • 2007
  • Influences of forage DM and addition of cane molasses on silage characteristics of berseem (Trifolium alexandrium) and lucerne (Medicago sativa) and their ruminal digestion kinetics in Nili buffaloes were studied. Berseem and lucerne fodders (at one tenth bloom) were ensiled with wheat straw in laboratory silos to achieve 20, 30, 40% forage DM and without wheat straw (control); each forage DM level was supplemented with 2, 4 and 6% of cane molasses at ensiling. The pH and lactic acid contents of berseem and lucerne silages were affected by both forage DM and addition of molasses. Dry matter, CP and true protein (TP) of berseem and lucerne silages were affected by forage DM at ensiling but were not affected by the addition of cane molasses. Higher DM, CP and TP losses were observed when berseem and lucerne fodders were ensiled either without wheat straw or with wheat straw to achieve 20% and 40% forage DM at ensiling compared with 30% DM at ensiling. Fiber fractions (NDF, ADF, hemicellulose and cellulose) of berseem silage and lucerne silage were significantly increased with increasing forage DM at ensiling. Addition of cane molasses did not affect the DM, CP, TP and fiber fractions of both berseem and lucerne silages. Berseem and lucerne ensiled at 30% DM with 2% cane molasses were screened for comparative ruminal digestion kinetics with their respective fodders. Addition of wheat straw to berseem or lucerne fodder at ensiling depressed DM and NDF ruminal degradability. However, ruminal lag time, rate of degradation and extent of digestion of silages were similar to their respective fodders. In conclusion, berseem and lucerne could be ensiled with wheat straw to increase their DM to 30% along with 2% molasses for buffaloes.

Effects of Sown Season and Maturity Stage on In vitro Fermentation and In sacco Degradation Characteristics of New Variety Maize Stover

  • Tang, S.X.;Li, F.W.;Gan, J.;Wang, M.;Zhou, C.S.;Sun, Z.H.;Han, X.F.;Tan, Z.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.6
    • /
    • pp.781-790
    • /
    • 2011
  • The effects of seedtime and maturity stage on nutritive value of five maize stover varieties, including conventional maize (Kexiangyu 11, CM), fodder maize (Huqing 1, FM), high oil maize (Gaoyou 115, HOM), sweet maize (Kexiangtianyu 1, SM) and waxy maize (Kexiangluoyu 1, WM), were examined based on chemical composition, in vitro gas production and in situ incubation techniques. Maize stover was sampled at d 17 and d 30 after tasseling, and designated as maturity stage 1 and stage 2, respectively. The average dry matter (DM) organic matter (OM), crude protein (CP) and fiber contents were the greatest for HOM, SM and FM, respectively. CM had the highest in vitro organic matter disappearance (IVOMD) and volatile fatty acid (VFA) concentration. The highest ammonia nitrogen ($NH_3$-N) concentration in the incubation solution, and effective degradability of DM ($ED_{DM}$) and neutral detergent fiber ($ED_{NDF}$) were observed in SM. Advanced maturity stage increased (p<0.05) DM content, $ED_{DM}$ and $ED_{NDF}$, but decreased (p<0.05) OM and CP contents, and decreased (p<0.05) b and a+b values, IVOMD and molar proportion of valerate in the incubation solution for maize stover. Maize sown in summer had greater (p<0.05) OM content, but lower DM, CP, neutral detergent fiber (NDF) and acid detergent fiber (ADF) content compared with maize sown in spring. Maize sown in summer had greater (p<0.001) IVOMD, $NH_3$-N concentration in the incubation solution and $ED_{NDF}$, but lower (p<0.01) ratio of acetate to propionate compared to maize sown in spring. The interaction effect of variety${\times}$seedtime was observed running through almost all chemical composition, in vitro gas production parameters and in situ DM and NDF degradability. The overall results suggested that SM had the highest nutrient quality, and also indicated the possibility of selecting maize variety and seedtime for the utilization of maize stover in ruminants.

Estimation of Nutritive Value of Whole Crop Rice Silage and Its Effect on Milk Production Performance by Dairy Cows

  • Islam, M.R.;Ishida, M.;Ando, S.;Nishida, T.;Yoshida, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1383-1389
    • /
    • 2004
  • The nutritive value and utilization of whole crop rice silage (WCRS), Hamasari, at yellow mature stage was determined by three studies. In first study, chemical composition, in vivo digestibility and metabolizable energy (ME) content of WCRS was determined by Holstein steers. WCRS contains 6.23% CP, its digestibility is 48.4% and estimated TDN is 56.4%. Its ME content was 1.91 Mcal/kg DM. Gross energy (GE) retention (% of GE intake) in steers is only 22.7% most of which was lost through feces (44.7% of GE intake). It takes 81 minutes to chew a kg of WCRS by steers. In another study, the effect of Hamasari at yellow mature stage at three stages of lactation (early, mid and late lactation) and two levels of concentrate (40 or 60%) on voluntary intake, ME content and ME intake, milk yield and composition using lactating Holstein dairy cows were investigated. Total intake increased with the concentrate level in early and mid lactation, but was similar irrespective of concentrate level in late lactation. WCRS intake was higher with 40% concentrate level than with 60% concentrate. ME intake by cows increased with the concentrate level and WCRS in early lactating cows with 40% concentrate can support only 90% of the ME requirement. Milk production in accordance with ME intake increased with the increase in concentrate level in early and mid lactating cows but was similar in late lactating cows irrespective of concentrate level. Fat and protein percent of milk in mid and late lactating cows were higher with for 60% concentrate than 40%, but reverse was in early lactating cows. Solids-not-fat was higher with for 60% concentrate than 40% concentrate. Finally in situ degradability of botanical fractions such as leaf, stem, head and whole WCRS, Hamasari at yellow mature stage was incubated from 0 to 96 h in Holstein steers to determine DM and N degradability characteristics of botanical fractions and whole WCRS. Both DM and N solubility, rate of degradation and effective degradability of leaf of silage was lower, but slowly degradable fraction was higher compared to stem and head. Solubility of DM and N of stem was higher than other fractions. The 48 h degradability, effective degradability and rate of degradation of leaf were always lower than stem or head. In conclusion, voluntary intake of silage ranged from 5 to 12 kg/d and was higher with low levels of concentrate, but milk yield was higher with high levels of concentrate. Fat corrected milk yield ranged from 19 to 37 kg per day. For consistency of milk, early lactating cows should not be allowed more than 40% whole crop rice silage in the diet, but late lactating cows may be allowed 60% whole crop rice silage.

Genomic and Proteomic Analysis of Microbial Function in the Gastrointestinal Tract of Ruminants - Review -

  • White, Bryan A.;Morrison, Mark
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.6
    • /
    • pp.880-884
    • /
    • 2001
  • Rumen microbiology research has undergone several evolutionary steps: the isolation and nutritional characterization of readily cultivated microbes; followed by the cloning and sequence analysis of individual genes relevant to key digestive processes; through to the use of small subunit ribosomal RNA (SSU rRNA) sequences for a cultivation-independent examination of microbial diversity. Our knowledge of rumen microbiology has expanded as a result, but the translation of this information into productive alterations of ruminal function has been rather limited. For instance, the cloning and characterization of cellulase genes in Escherichia coli has yielded some valuable information about this complex enzyme system in ruminal bacteria. SSU rRNA analyses have also confirmed that a considerable amount of the microbial diversity in the rumen is not represented in existing culture collections. However, we still have little idea of whether the key, and potentially rate-limiting, gene products and (or) microbial interactions have been identified. Technologies allowing high throughput nucleotide and protein sequence analysis have led to the emergence of two new fields of investigation, genomics and proteomics. Both disciplines can be further subdivided into functional and comparative lines of investigation. The massive accumulation of microbial DNA and protein sequence data, including complete genome sequences, is revolutionizing the way we examine microbial physiology and diversity. We describe here some examples of our use of genomics- and proteomics-based methods, to analyze the cellulase system of Ruminococcus flavefaciens FD-1 and explore the genome of Ruminococcus albus 8. At Illinois, we are using bacterial artificial chromosome (BAC) vectors to create libraries containing large (>75 kbases), contiguous segments of DNA from R. flavefaciens FD-1. Considering that every bacterium is not a candidate for whole genome sequencing, BAC libraries offer an attractive, alternative method to perform physical and functional analyses of a bacterium's genome. Our first plan is to use these BAC clones to determine whether or not cellulases and accessory genes in R. flavefaciens exist in clusters of orthologous genes (COGs). Proteomics is also being used to complement the BAC library/DNA sequencing approach. Proteins differentially expressed in response to carbon source are being identified by 2-D SDS-PAGE, followed by in-gel-digests and peptide mass mapping by MALDI-TOF Mass Spectrometry, as well as peptide sequencing by Edman degradation. At Ohio State, we have used a combination of functional proteomics, mutational analysis and differential display RT-PCR to obtain evidence suggesting that in addition to a cellulosome-like mechanism, R. albus 8 possesses other mechanisms for adhesion to plant surfaces. Genome walking on either side of these differentially expressed transcripts has also resulted in two interesting observations: i) a relatively large number of genes with no matches in the current databases and; ii) the identification of genes with a high level of sequence identity to those identified, until now, in the archaebacteria. Genomics and proteomics will also accelerate our understanding of microbial interactions, and allow a greater degree of in situ analyses in the future. The challenge is to utilize genomics and proteomics to improve our fundamental understanding of microbial physiology, diversity and ecology, and overcome constraints to ruminal function.

Influence of barley grain treated with alkaline compounds or organic extracts on ex vivo site and extent of digestion of starch

  • Naseroleslami, Reza;Mesgaran, Mohsen Danesh;Tahmasbi, Abdolmansour;Vakili, Seyed Alireza;Ebrahimi, Seyed Hadi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.230-236
    • /
    • 2018
  • Objective: Two ex vivo experiments were conducted to verify the effect of barley grain (Nusrat cultivar) treated with alkaline compounds (AC) including alum, ammonium, and sodium hydroxide or cation-exchanged organic extracts (OE) prepared from alfalfa hay, sugar beet pulp and Ulva Fasciata, on extent and digestion of starch. Methods: In the first study, the in vitro first order disappearance kinetic parameters of dry matter (DM), crude protein (CP) and starch were estimated using a non-linear model ($D_{(t)}=D_{(i)}{\cdot}e^{(-k_d{\cdot}time)}+I$, where: $D_{(t)}$ = potentially digestible residues at any time, $D_{(i)}$ = potentially digestible fraction at any time, $k_d$ = fractional rate constant of digestion (/h), I = indigestible fraction at any time). In the second experiment, the ruminal and post-ruminal disappearance of DM, CP, and starch were determined using in situ mobile nylon bag. Results: Barley grains treated with alum and alfalfa extract had a higher constant rate of starch digestion (0.11 and 0.09/h) than others. Barley grain treated with OE had a higher constant rate of CP digestion and that of treated with AC had a higher constant rate of starch digestion (0.08 and 0.11/h) compared with those of the other treatments. The indigestible fraction of starch treated with alum and sugar beet pulp extract was higher than that of the control group (0.24 and 0.25 vs 0.21). Barley grain treated with AC and OE had significant CP disappearance in the rumen, post-rumen and total tract, and also starch disappearance for post-rumen and total tract compared with the untreated (p<0.001). Conclusion: This study demonstrated that AC and OE might have positive effects on the starch degradation of the barley grain. In addition, treating barley grain with alum and sugar beet pulp extract could change the site and extend digestion of protein and starch.

xCyp26c Induced by Inhibition of BMP Signaling Is Involved in Anterior-Posterior Neural Patterning of Xenopus laevis

  • Yu, Saet-Byeol;Umair, Zobia;Kumar, Shiv;Lee, Unjoo;Lee, Seung-Hwan;Kim, Jong-Il;Kim, SungChan;Park, Jae-Bong;Lee, Jae-Yong;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.39 no.4
    • /
    • pp.352-357
    • /
    • 2016
  • Vertebrate neurogenesis requires inhibition of endogenous bone morphogenetic protein (BMP) signals in the ectoderm. Blocking of BMPs in animal cap explants causes the formation of anterior neural tissues as a default fate. To identify genes involved in the anterior neural specification, we analyzed gene expression profiles using a Xenopus Affymetrix Gene Chip after BMP-4 inhibition in animal cap explants. We found that the xCyp26c gene, encoding a retinoic acid (RA) degradation enzyme, was upregulated following inhibition of BMP signaling in early neuroectodermal cells. Whole-mount in situ hybridization analysis showed that xCyp26c expression started in the anterior region during the early neurula stage. Overexpression of xCyp26c weakly induced neural genes in animal cap explants. xCyp26c abolished the expression of all trans-/cis-RA-induced posterior genes, but not basic FGF-induced posterior genes. Depletion of xCyp26c by morpholino-oligonucleotides suppressed the normal formation of the axis and head, indicating that xCyp26c plays a critical role in the specification of anterior neural tissue in whole embryos. In animal cap explants, however, xCyp26c morpholinos did not alter anterior-to-posterior neural tissue formation. Together, these results suggest that xCyp26c plays a specific role in anterior-posterior (A-P) neural patterning of Xenopus embryos.

Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers (팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향)

  • Baek, Youl-Chang;Jeong, Jin-Young;Oh, Young-Kyoon;Kim, Min-Seok;Lee, Sung-Dae;Lee, Hyun-Jeong;Do, Yoon-Jung;Ahmadi, Farhad;Choi, Hyuck
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.