• Title/Summary/Keyword: In situ measurement

Search Result 613, Processing Time 0.031 seconds

The Effects of Negative Pressure and Drain Spacing in the Horizontal Method for an Early Settlement of Dredged and Filled Grounds (해안준설매립토의 조기안정을 위한 수평배수공법에서 부압과 배수재 배치간격의 영향)

  • 김수삼;한상재;김병일;김정기
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2003
  • In this paper, the laboratory test results with middle-sired ,soil box test in modeling the in-situ installing of horizontal drains are discussed the estimation of the optimum negative pressure. The test was carried out in the different vacuum pressure conditions together with the measurement for the settlement and volume change of drained water by the installed drains during the consolidation process. After the test, the water content was measured to both directions of lateral distance from the drain and depth of the soil, to find out the distribution of ground improvement and strength enhancement. From the analysis on the distribution of water content, the gradual application of vacuum pressure to higher level by pre-determined stages starting from low vacuum pressure is found to be effective and desirable. In the comparison of the degrees of consolidation with elapsed time, the calculated value by the prediction method based on the Barren's conventional theory showed a good agreement with the measured value. With this, It is positively considered that the applicability of the prediction method based on Barren's theory to the practical design of horizontal drains can be justified such as in the calculation of drain spacing and consolidation period.

Changes of Nitrifying Bacteria Depending on the Presence and Absence of Organic Pollutant in Nak-Dong River (낙동강에서의 유기성 오염 유무에 따른 질화세균의 변화)

  • Jin, Seon-Yeong;Lee, Young-Ok
    • Korean Journal of Microbiology
    • /
    • v.49 no.2
    • /
    • pp.137-145
    • /
    • 2013
  • This study was performed at 2 sites of Nak-Dong River to investigate the changes of nitrifiers depending on the presence and absence of organic pollutants (due to the effluents of domestic wastewater treatment plant, WWTP). Conventional chemical parameters such as T-N, $NH_4$-N, $NO_2$-N, $NO_3$-N were measured and the quantitative nitrifiers at the 2 sites were analyzed comparatively by fluorescent in situ hybridization (FISH) with NSO190 and NIT3, after checking the presence of gene amoA of ammonia oxidizing bacteria (AOB) and 16S rDNA signature sequence for Nitrobacter sp. that belongs to nitrite oxidizing bacteria (NOB). Also ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria were detected using FISH to get a glimpse of the general bacterial community structure of the sites. Based on the distribution structure of the ${\alpha}{\cdot}{\beta}{\cdot}{\gamma}$-Proteobacteria and the measurement of nitrogen in different phases, it could be said that the site 2 was more polluted with organics than site 1. Corresponding to the above conclusion, the average numbers of AOB and NOB detected by NSO160 and NIT3, respectively, at site 2 [AOB, $9.3{\times}10^5$; NOB, $1.6{\times}10^6$ (cells/ml)] was more than those at site 1 [AOB, $7.8{\times}10^5$; NOB, $0.8{\times}10^6$ (cells/ml)] and also their ratios to total counts were higher at site 2 (AOB, 27%; NOB, 34%) than those at site 1 (AOB, 18%; NOB, 23%). Thus, it could be concluded that the nitrification at site 2 was more active due to continuous loading of organics from the effluents of domestic WWTP, compared to site 1 located closed to raw drinking water supply and subsequently less polluted with organics.

Synthesis and Micellar Characterization of CBABC Type PLGA-PEO-PPO-PEO-PLGA Pentablock Copolymers

  • Seong, Haseob;Cho, Eun-Bum;Oh, Joongseok;Chang, Taihyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2342-2348
    • /
    • 2014
  • Poly(lactic-co-glycolic acid) (PLGA) were grafted to both ends of Pluronic$^{(R)}$ F68 ($(EO)_{75}(PO)_{30}(EO)_{75}$) triblock copolymer to produce poly{(lactic acid)$_m$-co-(glycolic acid)$_n$}-b-poly(ethylene oxide)$_{75}$-b-poly(propylene oxide)$_{30}$-b-poly(ethylene oxide)$_{75}$-b-poly{(lactic acid)$_m$-co-(glycolic acid)$_n$} (PLGA-F68-PLGA) pentablock copolymers. Molecular weights of PLGA blocks were controlled and five kinds of pentablock copolymers with different PLGA block lengths were synthesized using in-situ ring-opening polymerization of D,L-lactide and glycolide with tin(II) 2-ethylhexanoate ($Sn(Oct)_2$) catalyst. PLGA-F68-PLGA pentablock copolymers were characterized by $^1H$- and $^{13}C$-NMR, GPC, and TGA. The numbers (2m, 2n) of repeating units for lactic acid and glycolic acid inside PLGA segments were obtained as (48, 17), (90, 23), (125, 40), (180, 59), and (246, 64), with $^1H$-NMR measurement. From NMR data, the resultant molecular weights were determined in the range of 12,700-29,700, which were similar to those obtained from GPC. Polydispersity index was increased in the range of 1.32-1.91 as the content of PLGA blocks increased. TG and DTG thermograms showed discrete degradation traces for PLGA and F68 blocks, which indicate the weight fractions of PLGA blocks in pentablock copolymers can be calculated by TG profile and it is possible to remove PLGA block selectively. Hydrodynamic radius and radius of gyration of pentablock copolymer micelle were obtained in the range of 46-68 nm and 31-49 nm, respectively, in very dilute (i.e. 0.005 wt %) aqueous solution of THF:$H_2O$ = 10:90 by volume at $25^{\circ}C$.

A Case Analysis on the Spalling Evaluation of the Deep Rock Mass and Pillar Spalling Modeling (고심도 암반의 스폴링 평가에 대한 사례 분석 및 광주 스폴링 모델링)

  • Park, Seunghun;Kwon, Sangki;Lee, Changsoo;Lee, Jaewon;Yoon, Seok;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.2
    • /
    • pp.109-135
    • /
    • 2020
  • Globally, the deepening depth in the underground is a situation of the high interest for a purpose of the development of various facilities. The development of deep underground space should be based on the structural stability of rocks. Spalling is known to have an impact on the structural stability degradation in deep underground space. As an attempt to predict spalling, many researchers have proposed predicted conditions in accordance with stress states which occur around the tunnel, rock conditions, and types of rock. In addition, the analysis on spalling method has been verified by using computer modeling such as FLAC, EXAMINE, Insight 2D, UDEC and FRACOD, along with in-situ measurement results. In Canada URL (Underground Research Tunnel), CWFS model (Cohesion Weakening Frictional Strengthening) was used to precisely predict for the state of spalling, comparing spalling modeling. CWFS model has been identified as a reliable method for predicting such phenomena. This study aims to analyze several cases of spalling, and then make a comparison between the conditions for spalling occurrence and the predicted results of model CWFS. With this, it investigates the applicability of prediction of spalling, targeting pillar under deep depth condition.

Spatial and Temporal Variations of Satellite-derived 10-year Surface Particulate Organic Carbon (POC) in the East China Sea (동중국해에서 위성에서 추정된 10년 동안의 표층 입자성 유기 탄소의 시/공간적 변화)

  • Son, Young-Baek;Lee, Tae-Hee;Choi, Dong-Lim;Jang, Sung-Tae;Kim, Cheol-Ho;Ahn, Yu-Hwan;Ryu, Joo-Hyung;Kim, Moon-Koo;Jung, Seom-Kyu;Ishizaka, Joji
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.4
    • /
    • pp.421-437
    • /
    • 2010
  • Surface particulate organic carbon (POC) concentration estimated from Maximum Normalized Difference Carbon Index (MNDCI) algorithm using SeaWiFS data is used to determine spatial and temporal variations of the Changjiang Diluted Water (CDW) in the East China Sea. 10-year monthly POC concentrations (1997-2007) show clearly seasonal variations. Inter-annual variation of POC in whole and three different areas separated by standard deviation is not linearly correlated with the Changjiang River discharge that has decreased after 1998. To determine more detailed spatial and temporal POC variations, we used empirical orthogonal function (EOF) analysis in summer (Jun.-Sep.) from 2000 to 2007. First mode is spatially and temporally correlated with the area influenced by the Changjiang River discharge. Second mode is temporally less sensitive with the Changjiang River discharge but spatially correlated with north-south patterns. Relatively higher POC variations during 2000 and 2003 were shown in the southern East China Sea. These patterns during 2004 and 2007 moved to the northern East China Sea. This phenomenon is better related to spatial variations of wind-direction than the amount of Changjiang River discharge, which is verified from in-situ measurement.

Dredging Bottom Sediments of Seoha Weir at the Downstream of Kyongan Stream can be Used as a Feasible Pollutant Load Reduction Option in the Total Pollutant Load Management System of Kwangju City? (경안천 서하보 수저퇴적물 준설이 경기도 광주시 수질오염총량관리에 있어 추가적인 부하량 삭감수단으로써 타당한가?)

  • Yu, Seung-Hoon;Lee, Bum-Yeon;Lee, Kang-Hyun;Park, Shin Jung;Lee, Chang-Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2011
  • In order to assess the influences of bottom sediment on water quality, following measurement were made. (1) Estimations of pollutant loads from the bottom sediment based on mass balance concept, (2) measurements of pollutant concentrations in the sediment to assess the pollution level and influence potential, (3) in situ and laboratory measurements of Sediment Oxygen Demants (SOD) and pollutant load (sediment release) from bottom sediment. Analyses of inflow and outflow loadings using simple mass balance show that there are some variations found according to the pollutants. However, there is no consistent evidence that the sediment can be a source of pollutants. Pollutant concentrations in the sediment range 16~724.8 mg/kg (COD), 1.68 ~12.64 mg/kg (T-P), 5.6~76.8 mg/kg (T-N), 0.32~21.6 mg/kg ($NH_3$-N), 0.092~0.544 mg/kg ($NO_2$-N), 4.8~18.4 mg/kg ($NO_3$-N), and 1.59~11.23 mg/kg ($PO_4$-P). Measured SOD ranges $0.190{\sim}0.802g{\cdot}m^{-2}{\cdot}d^{-1}$ and measured release rate ranges $-1618.42{\sim}10mg/m^2{\cdot}d$(COD), $-12{\sim}16mg/m^2{\cdot}d$(T-P), $-197.37{\sim}140mg/m^2{\cdot}d$(T-N), $0.4{\sim}74.32mg/m^2{\cdot}d$($NH_3$-N), $-2.04{\sim}0.8mg/m^2{\cdot}d$ ($NO_2$-N), $-70{\sim}40mg/m^2{\cdot}d$ ($NO_3$-N), and $-26.11{\sim}28.55mg/m^2{\cdot}d$($PO_4$-P). All study results indicate that bottom sediments in the Seoha weir show only limited effects on the water quality. It implies that sediment dredging is not an effective option or management measure to reduce pollutant loading.

Development of VPPE-BE Testing System to Evaluate Modulus under Post-Compaction Variation in Matric Suction for Unsaturated Compacted Soils (다짐지반의 모관흡수력 변화에 따른 탄성계수 평가를 위한 VPPE-BE 시험 시스템 개발)

  • Lee, Sei-Hyun;Seo, Won-Seok;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.117-127
    • /
    • 2008
  • The volumetric pressure plate extractor (VPPE) was modified for the measurement of shear wave velocity ($V_s$) at various levels of matric suction as well as soil water characteristic curve (SWCC). A non-destructive technique with a pair of bender element (BE) was employed in order to measure the $V_s$ and the corresponding maximum shear modulus ($G_{max}$) of unsaturated soil specimens. Three types of soil were collected from different road construction sites in Korea. For all test soils, the variations in $G_{max}$ with the various levels of water content and matric suction were investigated using the developed apparatus. Compared with the preceding results from the suction-controlled torsional shear (TS) testing system and in-situ seismic tests, the feasibility fur evaluating modulus characteristics of unsaturated compacted soils with the developed VPPE-BE system was assessed. It was confirmed that the newly developed system would be potentially helpful in modeling seasonal variation of modulus.

Biodegradation of VOC Mixtures using a Bioactive Foam Reactor II: Analysis of Microbial Community (계면활성제 미생물반응기의(혼합 VOCs) 생분해 II: 미생물의 군집해석)

  • Jang, Hyun Sup;Shin, Shoung Kyu;Song, Ji Hyeon;Hwang, Sun Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.695-701
    • /
    • 2006
  • A toluene-degrading bacterial strain was isolated from a mixed culture that was maintained using toluene as a sole carbon and energy source. The isolated bacterium was classified as Pseudomonas sp. TBD4 based on the close relationship to bacteria belonging to this genus. A bottle study to determine biodegradation rates of individual aromatic compounds showed that the biodegradation was faster in the order of toluene, benzene, styrene, and p-xylene. However, when various mixtures were subjected to TDB4, styrene was degraded at the highest rate, indicating that both toluene and p-xylene could stimulate the degradation of other substrates whereas styrene played as an inhibitor. In addition, the mixed culture and TDB4 were inoculated to the bioactive foam reactor (BFR), and the reactor performance and the corresponding change of microbial community were monitored using the fluorescent in situ hybridization (FISH) method. When an inlet concentration of the VOC mixture increased to greater than 250 ppm, the overall removal efficiency dropped significantly. The FISH measurement demonstrated that the ratio of TDB4 to the total bacteria also decreased to less than 20% along with the decline in removal efficiency in the BFR. As a result, the periodic addition of the pre-grown TDB4 might have been beneficial to achieve a stable performance in the BFR operated over an extended period.

Study of Confidence Ranges for Field Phase Difference Measurement Data Collected using Geophones (지오폰을 활용한 현장 위상각차 계측 데이터 신뢰 구간에 관한 기초 연구)

  • Kim, Gunwoong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.41-54
    • /
    • 2024
  • Regular monitoring plays a crucial role in ensuring the safety of geotechnical structures. Currently, nondestructive methods are employed to monitor such structures to minimize the impact, e.g., sensor-based accelerometers, displacement meters, image-based lasers, and drone imaging. These technologies can observe surface changes; however, they frequently suffer difficulties in terms of identifying changes in internal properties. To monitor changes in internal properties, in situ geotechnical investigations can be employed. A nondestructive test that can be used for this purpose is the spectral analysis of surface wave (SASW) test using geophones. The SASW test is a nondestructive method; however, due to the time required for data interpretation and the difficulty in analyzing the data, it is challenging to use the SASW test for monitoring applications that require frequent observations. However, it is possible to apply the first-step analysis, which yields the dispersion curve, for monitoring rather than the complete SASW analysis, which yields the shear wave velocity. Thus, this paper presents a fundamental study on the phase difference that derives the dispersion curve to utilize the SASW test for monitoring. The reliability of each phase difference interval is examined to determine the boundary to the subjected monitor. The study used phase difference data obtained using a geophone from a single-layered, homogeneous ground site to evaluate reliable boundaries. The findings of this study are expected to improve the utility of monitoring by identifying the ideal boundary for phase difference data.

Preparation of PVdF/Fe3O4-GO (MGO) Composite Membrane by Using Electrospinning Technology and its Arsenic Removal Characteristics (전기방사법을 이용한 PVdF/Fe3O4-GO(MGO) 복합 분리막 제조 및 비소 제거 특성평가)

  • Jang, Wongi;Hou, Jian;Byun, Hongsik;Lee, Jae Yong
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.480-489
    • /
    • 2016
  • In this study, the PVdF/MGO composite nanofiber membranes (PMGs) introducing Iron oxide-Graphene oxide ($Fe_3O_4/GO$, Metallic graphene oxide; MGO) was prepared via electrospinng method and its arsenic removal characteristics were investigated. The thermal treatment was carried out to improve the mechanical strength of nanofiber membranes and then the results showed that of outstanding improvement effect. However, in case of PMGs, the decreasing tendency of mechanical strength was indicated as increasing MGO contents. From the results of pore-size analysis, it was confirmed that the porous structured membranes with 0.3 to $0.45{\mu}m$ were prepared. For the water treatment application, the water flux measurement was carried out. In particular, PMG2.0 sample showed about 70% improved water flux results ($153kg/m^2h$) compared to that of pure PVdF nanofiber membrane ($91kg/m^2h$) under the 0.3 bar condition. In addition, the PMGs have indicated the high removal rates of both As(III) and As(V) (up to 81% and 68%, respectively). Based on the adsorption isotherm analysis, the adsorption of As(III) and As(V) ions were both more suitable for the Freundlich. From all of results, it was concluded that PVdF/MGO composite nanofiber membranes could be utilized as a water treatment membrane and for the Arsenic removal applications.