• Title/Summary/Keyword: In situ X-ray diffraction

Search Result 136, Processing Time 0.021 seconds

Study on Analysis for Factors Inducing the Whangryeong Mountain Landslide (황령산 산사태 원인 분석에 대한 연구)

  • 최정찬;백인성
    • The Journal of Engineering Geology
    • /
    • v.12 no.2
    • /
    • pp.137-150
    • /
    • 2002
  • Recently, plane failure mode occurred frequently along the bedding plane having low angle dip about 20 degree when cutting slopes were constructed in sedimentary rock region of the Gyeongsang Basin. Landslide of the Whangryeong Mountain which was occurred at Busan Metropolitan City in 1999 belongs to the category mentioned above. Reconstruction for cutting slope of the Whangryeong Mountain has finished in 2000 and final grade of reconstructed cutting slope is 1:2.0. To analyze slope failure mode for landslide of the Whangryeong Mountain, various analyses were performed such as in-situ investigation and test, drilling, laboratory test, aerial photograph interpretation, X-ray diffraction analysis, and slope stability analysis using Stereographic Projection and Limit Equilibrium methods. As the result, it is identified that tension cracks had been developed one year before the landslide took place. The tension crack semis to be formed by merging several joint sets. It appears that failure blocks broke down along the sliding planes of different layers. Risk of plane failure is conformed as a result of stability analysis using Stereographic Projection and Limit Equilibrium methods in case that greenish gray tuffaceous shales, regared as sliding planes, are weathered. From now on, a detailed investigation is needed for the thin layers which is sensitive to weathering, and stability analysis for this layer is performed at cut slope construction site having similar geological condition.

Preparation of AgCl/Ag3PO4/Diatomite Composite by Microemulsion Method for Rapid Photo-Degradation of Rhodamine B with Stability under Visible Light

  • Zhu, Hai-Tao;Ren, Qi-Fang;Jin, Zhen;Ding, Yi;Liu, Xin-Yu;Ni, Xi-Hui;Han, Meng-Li;Ma, Shi-Yu;Ye, Qing;Oh, Won-Chun
    • Korean Journal of Materials Research
    • /
    • v.30 no.8
    • /
    • pp.383-392
    • /
    • 2020
  • In this paper, AgCl/Ag3PO4/diatomite photocatalyst is successfully synthesized by microemulsion method and anion in situ substitution method. X-ray diffraction (XRD), photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and ultraviolet-visible spectroscopy (UV-Vis) are used to study the structural and physicochemical characteristics of the AgCl/Ag3PO4/diatomite composite. Using rhodamine B (RhB) as a simulated pollutant, the photocatalytic activity and stability of the AgCl/Ag3PO4/diatomite composite under visible light are evaluated. In the AgCl/Ag3PO4/diatomite visible light system, RhB is nearly 100 % degraded within 15 minutes. And, after five cycles of operation, the photocatalytic activity of AgCl/Ag3PO4/diatomite remains at 95 % of the original level, much higher than that of pure Ag3PO4 (40 %). In addition, the mechanism of enhanced catalytic performance is discussed. The high photocatalytic performance of AgCl/Ag3PO4/diatomite composites can be attributed to the synergistic effect of Ag3PO4, diatomite and AgCl nanoparticles. Free radical trapping experiments are used to show that holes and oxygen are the main active species. This material can quickly react with dye molecules adsorbed on the surface of diatomite to degrade RhB dye to CO2 and H2O. Even more remarkably, AgCl/Ag3PO4/diatomite can maintain above 95 % photo-degradation activity after five cycles.

CHARACTERISTICS OF HETEROEPITAXIALLY GROWN $Y_2$O$_3$ FILMS BY r-ICB FOR VLSI

  • Choi, S.C.;Cho, M.H.;Whangbo, S.W.;Kim, M.S.;Whang, C.N.;Kang, S.B.;Lee, S.I.;Lee, M.Y.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.6
    • /
    • pp.809-815
    • /
    • 1996
  • $Y_2O_3$-based metal-insulator-semiconductor (MIS) structure on p-Si(100) has been studied. Films were prepared by UHV reactive ionized cluster beam deposition (r-ICBD) system. The base pressure of the system was about $1 \times 10^{-9}$ -9/ Torr and the process pressure $2 \times 10^{-5}$ Torr in oxygen ambience. Glancing X-ray diffraction(GXRD) and in-situ reflection high energy electron diffracton(RHEED) analyses were performed to investigate the crystallinity of the films. The results show phase change from amorphous state to crystalline one with increasingqr acceleration voltage and substrate temperature. It is also found that the phase transformation from $Y_2O_3$(111)//Si(100) to $Y_2O_3$(110)//Si(100) in growing directions takes place between $500^{\circ}C$ and $700^{\circ}C$. Especially as acceleration voltage is increased, preferentially oriented crystallinity was increased. Finally under the condition of above substrate temperature $700^{\circ}C$ and acceleration voltage 5kV, the $Y_2O_3$films are found to be grown epitaxially in direction of $Y_2O_3$(1l0)//Si(100) by observation of transmission electron microscope(TEM). Capacitance-voltage and current-voltage measurements were conducted to characterize Al/$Y_2O_3$/Si MIS structure with varying acceleration voltage and substrate temperature. Deposited $Y_2O_3$ films of thickness of nearly 300$\AA$ show that the breakdown field increases to 7~8MV /cm at the same conditon of epitaxial growing. These results also coincide with XPS spectra which indicate better stoichiometric characteristic in the condition of better crystalline one. After oxidation the breakdown field increases to 13MV /cm because the MIS structure contains interface silicon oxide of about 30$\AA$. In this case the dielectric constant of only $Y_2O_3$ layer is found to be $\in$15.6. These results have demonstrated the potential of using yttrium oxide for future VLSI/ULSI gate insulator applications.

  • PDF

Development of Biomass-Derived Anode Material for Lithium-Ion Battery (리튬이온 전지용 바이오매스 기반 음극재 개발)

  • Jeong, Jae Yoon;Lee, Dong Jun;Heo, Jungwon;Lim, Du-Hyun;Seo, Yang-Gon;Ahn, Jou-Hyeon;Choi, Chang-Ho
    • Clean Technology
    • /
    • v.26 no.2
    • /
    • pp.131-136
    • /
    • 2020
  • Biomass bamboo charcoal is utilized as anode for lithium-ion battery in an effort to find an alternative to conventional resources such as cokes and petroleum pitches. The amorphous phase of the bamboo charcoal is partially converted to graphite through a low temperature graphitization process with iron oxide nanoparticle catalyst impregnated into the bamboo charcoal. An optimum catalysis amount for the graphitization is determined based on the characterization results of TEM, Raman spectroscopy, and XRD. It is found that the graphitization occurs surrounding the surface of the catalysis, and large pores are formed after the removal of the catalysis. The formation of the large pores increases the pore volume and, as a result, reduces the surface area of the graphitized bamboo charcoal. The partial graphitization of the pristine bamboo charcoal improves the discharge capacity and coulombic efficiency compared to the pristine counterpart. However, the discharge capacity of the graphitized charcoal at elevated current density is decreased due to the reduced surface area. These results indicate that the size of the catalysis formed in in-situ graphitization is a critical parameter to determine the battery performance and thus should be tuned as small as one of the pristine charcoal to retain the surface area and eventually improve the discharge capacity at high current density.

Effects of High-temperature Annealing of CeO$_2$ Buffer Layers on the Surface Morphology of YBa$_2Cu_3O_{7-{\delta}}$ Films on CeO$_2$-buffered R-cut Sapphire Substrates (CeO$_2$ 완충층에 대한 고온 열처리가 CeO$_2$ 완충층을 지닌 R-cut 사파이어 기판 우에 성장된 YBa$_2Cu_3O_{7-{\delta}}$ 박막의 표면상태에 미치는 영향)

  • Lee, Jae-Hun;Yang, Woo-Il;Jang, Jeong-Mun;Ryu, Jae-Su;Komashko, V.A.;Lee, Sang-Yeong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.152-159
    • /
    • 1999
  • YBa$_2Cu_3O_{7-{\delta}}$ (YBCO) films grown on CeO$_2$-buffered r-cut sapphire substrates (CbS's) were prepared and their structural and electrical properties were measured. Post-annealed CeO$_2$ films were used as buffer layers for the experiments. It turned out that the YBCO films grown on post-annealed CbS's had the rms roughness of less than 20 ${\AA}$ and peak-to-peak roughness of about 30 ${\AA}$ when the YBCO film thickness was 3000 ${\AA}$. Meanwhile, YBCO films on in-situ grown CeO$_2$ buffer layers on r-cut sapphire substrates appeared to have the peak-to-peak roughness of more than 450 ${\AA}$. X-ray diffraction data revealed that the YBCO flms were epitaxially grown along the c-axis with the typical FWHM of(005) ${\theta}$ -2 ${\theta}$ peak about 0. 16 $^{\circ}$ and ${\Delta}$ ${\omega}$ of the (005) peak about 0.5 $^{\circ}$. T$_c$ > 87 K, ${\Delta}$T < 1 K and R(look)/R(100K) ${\ge}$3 were observed from the YBCO films. Applicability of the YBCO films for high-frequency applications was described.

  • PDF

Mineral Chemistry and Geochemistry of the Bentonites Intercalated within the Basal Conglomerates of the Tertiary Sediments in Korea and Their Stratigraphical Implication (제3기층 기저역암에 협재되는 벤토나이트의 광물학, 지화학적 연구 및 층서적 적용)

  • 이종천;이규호;문희수
    • Economic and Environmental Geology
    • /
    • v.34 no.1
    • /
    • pp.13-23
    • /
    • 2001
  • Bentonite layers are intercalated within the basal conglomerates in the Tertiary sedimentary basins of Kampo, Janggi and Pohang, southeastern Korea. Eighteen samples of the bentonites went through X-ray diffraction, scanning electron microscopy, heavy mineral analyses, chemical analyses and oxygen, hydrogen stable isotope analyses to define the mineralogical characters of the bentonites. Heavy minerals such as zircons, apatites, amphiboles and biotites separated from bentonites show clean and euhedral surfaces, which are the characteristic features of volcanic origin. But biotites from the Chunbook Conglomerate are found as altered and heavily broken flakes which implies longer transportation of these bentonites. $TiO_{2}/Al_{2}O_{3} ratios of <2 $\mu$m particle fractions (the Chunbook Conglomerate 0.031; Janggi 0.029; Kampo 0.025) suggest that those are originated from volcanic tuffs. That is, the higher the value is, the more mafic in chemical compositions of the original tuffs. Authigenic montmorillonite and zeolite minerals were observed by SEM, which indicates diagenesis origin of bentonites. But the samples from the Chunbook Conglomerate showed only chaotically packed clay flakes in the matrix of sands or conglomerates, which implies detrital influence, not authigenic origin. The structural formulae of montmorillonite from these basins reflects their environment of formation. Fe (Ⅵ) can show the redox condition of its past environment and much lower $Fe^{2+}(Ⅵ)/Fe^{3+}(Ⅵ)$ ratios in montmorillonite of the Chunbook Conglomerate imply the greater oxidizing influence. Calculated burial depths from oxygen stable isotope data of the samples from the Chunbook Conglomerate generally fall to the range of 929~963 m whereas the real burial depth of this area is only 530~580 m. This could be explained as the bentonites of the Chunbook conglomerate had not been formed in situ. Discriminant analyses with the data from chemical analyses and structural formulae of montmorillonites show that bentonites from three different basins could definitely be distinguished with each other. This result arises from the different chemical compositions of original volcanic ashes and the difference of sedimentary environments.

  • PDF