• Title/Summary/Keyword: In clustering

Search Result 5,135, Processing Time 0.037 seconds

Clustering Routing Algorithms In Wireless Sensor Networks: An Overview

  • Liu, Xuxun;Shi, Jinglun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.7
    • /
    • pp.1735-1755
    • /
    • 2012
  • Wireless sensor networks (WSNs) are becoming increasingly attractive for a variety of applications and have become a hot research area. Routing is a key technology in WSNs and can be coarsely divided into two categories: flat routing and hierarchical routing. In a flat topology, all nodes perform the same task and have the same functionality in the network. In contrast, nodes in a hierarchical topology perform different tasks in WSNs and are typically organized into lots of clusters according to specific requirements or metrics. Owing to a variety of advantages, clustering routing protocols are becoming an active branch of routing technology in WSNs. In this paper, we present an overview on clustering routing algorithms for WSNs with focus on differentiating them according to diverse cluster shapes. We outline the main advantages of clustering and discuss the classification of clustering routing protocols in WSNs. In particular, we systematically analyze the typical clustering routing protocols in WSNs and compare the different approaches based on various metrics. Finally, we conclude the paper with some open questions.

Path based K-means Clustering for RFID Data Sets

  • Yun, Hong-Won
    • Journal of information and communication convergence engineering
    • /
    • v.6 no.4
    • /
    • pp.434-438
    • /
    • 2008
  • Massive data are continuously produced with a data rate of over several terabytes every day. These applications need effective clustering algorithms to achieve an overall high performance computation. In this paper, we propose ancestor as cluster center based approach to clustering, the K-means algorithm using ancestor. We modify the K-means algorithm. We present a clustering architecture and a clustering algorithm that minimize of I/Os and show a performance with excellent. In our experimental performance evaluation, we present that our algorithm can improve the I/O speed and the query processing time.

Exponential Probability Clustering

  • Yuxi, Hou;Park, Cheol-Hoon
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.671-672
    • /
    • 2008
  • K-means is a popular one in clustering algorithms, and it minimizes the mutual euclidean distance among the sample points. But K-means has some demerits, such as depending on initial condition, unsupervised learning and local optimum. However mahalanobis distancecan deal this case well. In this paper, the author proposed a new clustering algorithm, named exponential probability clustering, which applied Mahalanobis distance into K-means clustering. This new clustering does possess not only the probability interpretation, but also clustering merits. Finally, the simulation results also demonstrate its good performance compared to K-means algorithm.

  • PDF

A Multi-Dimensional Issue Clustering from the Perspective Consumers' Interests and R&D (소비자 선호 이슈 및 R&D 관점에서의 다차원 이슈 클러스터링)

  • Hyun, Yoonjin;Kim, Namgyu;Cho, Yoonho
    • Journal of Information Technology Services
    • /
    • v.14 no.1
    • /
    • pp.237-249
    • /
    • 2015
  • The volume of unstructured text data generated by various social media has been increasing rapidly; therefore, use of text mining to support decision making has also been increasing. Especially, issue Clustering-determining a new relation with various issues through clustering-has gained attention from many researchers. However, traditional issue clustering methods can only be performed based on the co-occurrence frequency of issue keywords in many documents. Therefore, an association between issues that have a low co-occurrence frequency cannot be discovered using traditional issue clustering methods, even if those issues are strongly related in other perspectives. Therefore, issue clustering that fits each of criteria needs to be performed by the perspective of analysis and the purpose of use. In this study, a multi-dimensional issue clustering is proposed to overcome the limitation of traditional issue clustering. We assert, specifically in this study, that issue clustering should be performed for a particular purpose. We analyze the results of applying our methodology to two specific perspectives on issue clustering, (i) consumers' interests, and (ii) related R&D terms.

Document Clustering Using Reference Titles (인용문헌 표제를 이용한 문헌 클러스터링에 관한 연구)

  • Choi, Sang-Hee
    • Journal of the Korean Society for information Management
    • /
    • v.27 no.2
    • /
    • pp.241-252
    • /
    • 2010
  • Titles have been regarded as having effective clustering features, but they sometimes fail to represent the topic of a document and result in poorly generated document clusters. This study aims to improve the performance of document clustering with titles by suggesting titles in the citation bibliography as a clustering feature. Titles of original literature, titles in the citation bibliography, and an aggregation of both titles were adapted to measure the performance of clustering. Each feature was combined with three hierarchical clustering methods, within group average linkage, complete linkage, and Ward's method in the clustering experiment. The best practice case of this experiment was clustering document with features from both titles by within-groups average method.

Magnetoencephalography Interictal Spike Clustering in Relation with Surgical Outcome of Cortical Dysplasia

  • Jeong, Woorim;Chung, Chun Kee;Kim, June Sic
    • Journal of Korean Neurosurgical Society
    • /
    • v.52 no.5
    • /
    • pp.466-471
    • /
    • 2012
  • Objective : The aim of this study was to devise an objective clustering method for magnetoencephalography (MEG) interictal spike sources, and to identify the prognostic value of the new clustering method in adult epilepsy patients with cortical dysplasia (CD). Methods : We retrospectively analyzed 25 adult patients with histologically proven CD, who underwent MEG examination and surgical resection for intractable epilepsy. The mean postoperative follow-up period was 3.1 years. A hierarchical clustering method was adopted for MEG interictal spike source clustering. Clustered sources were then tested for their prognostic value toward surgical outcome. Results : Postoperative seizure outcome was Engel class I in 6 (24%), class II in 3 (12%), class III in 12 (48%), and class IV in 4 (16%) patients. With respect to MEG spike clustering, 12 of 25 (48%) patients showed 1 cluster, 2 (8%) showed 2 or more clusters within the same lobe, 10 (40%) showed 2 or more clusters in a different lobe, and 1 (4%) patient had only scattered spikes with no clustering. Patients who showed focal clustering achieved better surgical outcome than distributed cases (p=0.017). Conclusion : This is the first study that introduces an objective method to classify the distribution of MEG interictal spike sources. By using a hierarchical clustering method, we found that the presence of focal clustered spikes predicts a better postoperative outcome in epilepsy patients with CD.

Zone-Based Self-Organized Clustering with Byzantine Agreement in MANET

  • Sung, Soon-Hwa
    • Journal of Communications and Networks
    • /
    • v.10 no.2
    • /
    • pp.221-227
    • /
    • 2008
  • The proposed zone-based self-organized clustering broadcasts neighbor information to only a zone with the same ID. Besides, the zone-based self-organized clustering with unique IDs can communicate securely even if the state transition of nodes in zone-based self-organized clustering is threatened by corrupted nodes. For this security, the Byzantine agreement protocol with proactive asynchronous verifiable secret sharing (AVSS) is considered. As a result of simulation, an efficiency and a security of the proposed clustering are better than those of a traditional clustering. Therefore, this paper describes a new and extended self-organized clustering that securely seeks to minimize the interference in mobile ad hoc networks (MANETs).

A Survey of Advances in Hierarchical Clustering Algorithms and Applications

  • Munshi, Amr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.5
    • /
    • pp.17-24
    • /
    • 2022
  • Hierarchical clustering methods have been proposed for more than sixty years and yet are used in various disciplines for relation observation and clustering purposes. In 1965, divisive hierarchical methods were proposed in biological sciences and have been used in various disciplines such as, and anthropology, ecology. Furthermore, recently hierarchical methods are being deployed in economy and energy studies. Unlike most clustering algorithms that require the number of clusters to be specified by the user, hierarchical clustering is well suited for situations where the number of clusters is unknown. This paper presents an overview of the hierarchical clustering algorithm. The dissimilarity measurements that can be utilized in hierarchical clustering algorithms are discussed. Further, the paper highlights the various and recent disciplines where the hierarchical clustering algorithms are employed.

Automatic Switching of Clustering Methods based on Fuzzy Inference in Bibliographic Big Data Retrieval System

  • Zolkepli, Maslina;Dong, Fangyan;Hirota, Kaoru
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.256-267
    • /
    • 2014
  • An automatic switch among ensembles of clustering algorithms is proposed as a part of the bibliographic big data retrieval system by utilizing a fuzzy inference engine as a decision support tool to select the fastest performing clustering algorithm between fuzzy C-means (FCM) clustering, Newman-Girvan clustering, and the combination of both. It aims to realize the best clustering performance with the reduction of computational complexity from O($n^3$) to O(n). The automatic switch is developed by using fuzzy logic controller written in Java and accepts 3 inputs from each clustering result, i.e., number of clusters, number of vertices, and time taken to complete the clustering process. The experimental results on PC (Intel Core i5-3210M at 2.50 GHz) demonstrates that the combination of both clustering algorithms is selected as the best performing algorithm in 20 out of 27 cases with the highest percentage of 83.99%, completed in 161 seconds. The self-adapted FCM is selected as the best performing algorithm in 4 cases and the Newman-Girvan is selected in 3 cases.The automatic switch is to be incorporated into the bibliographic big data retrieval system that focuses on visualization of fuzzy relationship using hybrid approach combining FCM and Newman-Girvan algorithm, and is planning to be released to the public through the Internet.

Veri cation of Improving a Clustering Algorith for Microarray Data with Missing Values

  • Kim, Su-Young
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.2
    • /
    • pp.315-321
    • /
    • 2011
  • Gene expression microarray data often include multiple missing values. Most gene expression analysis (including gene clustering analysis); however, require a complete data matric as an input. In ordinary clustering methods, just a single missing value makes one abandon the whole data of a gene even if the rest of data for that gene was intact. The quality of analysis may decrease seriously as the missing rate is increased. In the opposite aspect, the imputation of missing value may result in an artifact that reduces the reliability of the analysis. To clarify this contradiction in microarray clustering analysis, this paper compared the accuracy of clustering with and without imputation over several microarray data having different missing rates. This paper also tested the clustering efficiency of several imputation methods including our propose algorithm. The results showed it is worthwhile to check the clustering result in this alternative way without any imputed data for the imperfect microarray data.