• Title/Summary/Keyword: Impurity correction

Search Result 7, Processing Time 0.025 seconds

Distribution of Pr ions in $Y(Ba_{1-Xn}Pr_{Xn})_2Cu_3O_y$

  • Ha, Dong-Han;Lee, Kyu-Won;Kim, Jin-Tae;Park, Yong-Ki;Park, Jong-Chul
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.135-140
    • /
    • 2000
  • Distribution of Pr ions between Y- and Ba-site of the $Y(Ba_{1-Xn}Pr_{Xn})_2Cu_3O_y$ ($0{\leq}Xn{\leq}{0.3}$, Xn : nominal composition) material prepared by the solid state reaction method was studied. Although the samples have narrow superconducting transition, tiny peaks of $Y_2BaCuO_5$ impurity phase are included in the x-ray diffraction patterns suggesting that some of the Pr ions are entered into the Y-site. The distribution of Pr ions between Y- and Ba-site was determined by measuring the mass fraction of YBCO and $Y_2BaCuO_5$ phase for each sample through the Rietveld analysis of the x-ray diffraction data. About 60 % of Pr ions occupy the Y-site regardless of the Pr content. Various superconducting parameters such as the oxygen content and the hole concentration etc. are compared before and after the impurity correction.

  • PDF

A Study on the Threshold voltage and I-V Characteristics in the Ion-implanted Short channel E-IGFET(II) (Ion-Implanted short Channel E-IGFET의 Threshold 전압과 I-V특성에 관한 연구(II))

  • Son, Sang-Hui;Kim, Hong-Bae;Gwak, Gye-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.4
    • /
    • pp.51-58
    • /
    • 1985
  • A simple model for the impurity profile in an ion-implanted channel layer of an enhance-ment type IGFET is assumed and a simple expression for the threshold voltage is derived by the assumed impurity profile. In application, the concept of correction factor K is used and the value of threshold voltage is well agreed with experimental value. Also, 1-V character-istics curve is well agreed with experimental value. In addition, this program is packaged and is utilized.

  • PDF

Correction of lmpurity Effects on the Characterization of YBCO (YBCO의 특성분석에 있어서 불순물효과의 보정)

  • Ha, Dong-Han;Byon, Sun-Ye;Kim, Yong-Il;Han, Gi-Yeol;Lee, Kyu-Won
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.171-174
    • /
    • 1999
  • We have characterized solid solution Y$_{l-x}Ca_xBa_2Cu_3O_y$ (0${\le}$x${\le}$0.3) materials by measuring the XRD pattern, resistivity and hole concentrations, etc. As Ca concentration increases, T$_c$, is decreased monotonically because the hole concentration on the superconducting plane increases beyond the optimum region in the electronic phase diagram due to the hole transfer from the Cu-O chain to the CuO$_2$ plane. A very small amount of secondary phase have large effects on the analysis of oxygen content and hole concentration etc. The results before the correction of impurity phase are compared with those after the correction.

  • PDF

Determination of Neutron Absorption Fraction Factor in Manganese Sulfate Bath System (황산망간 용액조 장치의 중성자 흡수분율 보정인자 결정)

  • Lee, Kyung-Ju;Park, Kil-Oung;Hwang, Sun-Tae;Lee, Kun-Jai
    • Nuclear Engineering and Technology
    • /
    • v.21 no.1
    • /
    • pp.12-17
    • /
    • 1989
  • The correction factor of neutron fraction absorbed by $^{55}$ Mn in the MnSO$_4$ bath was determined for the absolute measurement of neutron emission rate by using the solution circulation-type manganese sulfate bath system. For the determination of this correction factor, I/f, the atomic number desnsity and the effective neutron capture cross section data of Mn, S and impurity elements in the MnSO$_4$ solution were determined. For the atomic number density determination, the MnSO$_4$ solution concentration was determined by using the volumetric EDTA titration and gravimetric method. The impurity contents were analyzed by using the ICP method. For the calculation of effective neutron capture cross sections, a FORTRAN computer program EASCAL was developed in this study. in which Westcott's parameters and Axton's empirical relations are used.

  • PDF

The isobaric effect correction and measurement of the Ru isotopes by thermal ionization mass spectrometry (열 이온화 질량분석기를 이용한 Ru 동위원소 측정 및 동중원소 영향 보정)

  • Jeon, Young-Shin;Kim, Jung-Suk;Han, Sun-Ho;Song, Kyu-Seok
    • Analytical Science and Technology
    • /
    • v.23 no.5
    • /
    • pp.498-504
    • /
    • 2010
  • It is very difficult to get stable ion peak intensity of ruthenium by thermal ionization mass spectrometry because of its high ionization potential and high volatility of its oxides which causes to lose much of ruthenium ions, so the intensity of the signal decrease quickly. Accordingly, a study was performed in oder to increase the ionization efficiency and to prevent sample losses due to volatilization and to check with isobaric effect by impurities in filament for the measurement of ruthenium isotopes. Both single filament and double filament were tested. The former was proved to be more efficient for the stable and strong intensity of signal and revealed less isobaric effect from the molybdenum (Mo) as a filament impurity. Also, when the temperature of filament increased too high, the isobaric effect from Mo greatly appeared. That is, Mo impurity from filament gave a serious effect for measuring the ruthenium isotopes. It was proved to be of importance that filament current should be slowly increased with time interval. Finally, ruthenium isotopes were accurately measured by correction with measuring $^{94}Mo/^{99}Ru$.

First-principles Study of Graphene/Hexagonal Boron Nitride Stacked Layer with Intercalated Atoms

  • Sung, Dongchul;Kim, Gunn;Hong, Suklyun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.185.2-185.2
    • /
    • 2014
  • We have studied the atomic and electronic structure of graphene nanoribbons (GNRs) on a hexagonal boron nitride (h-BN) sheet with intercalated atoms using first-principles calculations. The h-BN sheet is an insulator with the band gap about 6 eV and then it may a good candidate as a supporting dielectric substrate for graphene-based nanodevices. Especially, the h-BN sheet has the similar bond structure as graphene with a slightly longer lattice constant. For the computation, we use the Vienna ab initio simulation package (VASP). The generalized gradient approximation (GGA) in the form of the PBE-type parameterization is employed. The ions are described via the projector augmented wave potentials, and the cutoff energy for the plane-wave basis is set to 400 eV. To include weak van der Waals (vdW) interactions, we adopt the Grimme's DFT-D2 vdW correction based on a semi-empirical GGA-type theory. Our calculations reveal that the localized states appear at the zigzag edge of the GNR on the h-BN sheet due to the flat band of the zigzag edge at the Fermi level and the localized states rapidly decay into the bulk. The open-edged graphene with a large corrugation allows some space between graphene and h-BN sheet. Therefore, atoms or molecules can be intercalated between them. We have considered various types of atoms for intercalation. The atoms are initially placed at the edge of the GNR or inserted in between GNR and h-BN sheet to find the effect of intercalated atoms on the atomic and electronic structure of graphene. We find that the impurity atoms at the edge of GNR are more stable than in between GNR and h-BN sheet for all cases considered. The nickel atom has the lowest energy difference of ~0.2 eV, which means that it is relatively easy to intercalate the Ni atom in this structure. Finally, the magnetic properties of intercalated atoms between GNR and h-BN sheet are investigated.

  • PDF

Development of an exclusive column method for 82Sr/82Rb generator using a 100 MeV proton linear accelerator of KOMAC

  • Kye-Ryung Kim;Yeong Su Ha;Sang-Pil Yoon;Yeon-ji Lee;Yong-Sub Cho;Hyeongi Kim;Sang-Jin Han;Jung Young Kim;Kyo Chul Lee;Jin Su Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • 82Sr for 82Rb generator was produced through the irradiation of the proton beam on the nat.RbCI target at the target irradiation facility installed at the end of the Rl-dedicated beamline of the 100 MeV proton linear accelerator of KOMAC (Korea Multi-purpose Accelerator Complex). The average current of the proton beam was 1.2 µA for irradiation time of 150 min. For the separation and purification of the 82Sr from nat.RbCI irradiated, Chelex-100 resin was used. The activities of 82Sr in the irradiated nat.RbCI target solution and after purification were 45.29 µCi and 43.4 µCi, respectively. The separation and purification yield was 95.8%. As an adsorbent to be filled in the generator for 82Sr adsorption hydrous tin oxide was selected. The adsorption yield of 82Sr into the generator adsorbent was > 99 %, and the total amount of 82Sr adsorbed to the generator was 21.6 µCi as of the day of the 82Rb elution experiment. When the elution amount was 22 mL, the maximum82Rb elution yield was 93.3%, and the elution yield increased as the flow rate increased. After the eluted 82Rb was filled in the correction phantom of the small PET for animals, a PET image was taken. The image scan time was set to 5 min, and the phantom PET image was successfully obtained. As results of impurity analysis on eluted 82Rb using ICP-MS, nat.Rb stable isotopes that compete in vivo of 82Rb were identified as undetected levels and were determined to be No-Carrier-Added (NCA).