• Title/Summary/Keyword: Impurities

Search Result 1,327, Processing Time 0.023 seconds

Study on the Manufacture of High-purity Vanadium Pentoxide for VRFB Using Chelating Agents (킬레이트제를 활용한 VRFB용 고순도 오산화바나듐 제조 연구)

  • Kim, Sun Kyung;Kwon, Sukcheol;Kim, Hee Seo;Suh, Yong Jae;Yoo, Jeong Hyun;Chang, Hankwon;Jeon, Ho-SeoK;Park, In-Su
    • Resources Recycling
    • /
    • v.31 no.2
    • /
    • pp.20-32
    • /
    • 2022
  • This study implemented a chelating agent (Ethylenediaminetetraacetic acid, EDTA) in purification to obtain high-purity vanadium pentoxide (V2O5) for use in VRFB (Vanadium Redox Flow Battery). V2O5 (powder) was produced through the precipitation recovery of ammonium metavanadate (NH4VO3) from a vanadium solution, which was prepared using a low-purity vanadium raw material. The initial purity of the powder was estimated to be 99.7%. However, the use of a chelating agent improved its purity up to 99.9% or higher. It was conjectured that the added chelating agent reacted with the impurity ions to form a complex, stabilizing them. This improved the selectivity for vanadium in the recovery process. However, the prepared V2O5 powder exhibited higher contents of K, Mn, Fe, Na, and Al than those in the standard counterparts, thus necessitating additional research on its impurity separation. Furthermore, the vanadium electrolyte was prepared using the high-purity V2O5 powder in a newly developed direct electrolytic process. Its analytical properties were compared with those of commercial electrolytes. Owing to the high concentration of the K, Ca, Na, Al, Mg, and Si impurities in the produced vanadium electrolyte, the purity was analyzed to be 99.97%, lower than those (99.98%) of its commercial counterparts. Thus, further research on optimizing the high-purity V2O5 powder and electrolyte manufacturing processes may yield a process capable of commercialization.

Preparation of Silica Nanoparticles via Recycling of Silicon Sludge from Semiconductor Dicing Process and Electro-responsive Smart Fluid Application (반도체 다이싱 공정에서 발생하는 실리콘 슬러지를 재활용한 실리카 나노입자의 제조 및 전기감응형 유체로의 응용)

  • Yeon-Ryong Chu;Suk Jekal;Jiwon Kim;Ha-Yeong Kim;Chan-Gyo Kim;Minki Sa;Hyung Sub Sim;Chang-Min Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.3
    • /
    • pp.15-25
    • /
    • 2023
  • In this study, silicon sludge from semiconductor dicing process is recycled to fabricate silica nanoparticles, which are applied as dispersing materials for electro-responsive (ER) smart fluid. In specific, metal impurities are removed from silicon sludge by acid washing to obtain the high-purity silicon powder. And then, silica nanoparticles are synthesized by facile hydrothermal method employing the silicon powder as reactant material. To control the size of silica nanoparticles, the reaction time of hydrothermal method is varied as 8, 15, 20, and 30 hours are applied to control the size of silica nanoparticles. Sizes of silica nanoparticles are increased proportionally to the reaction time owing to the increased numbers of hydrolysis and condensation reactions. As-synthesized silica nanoparticles are prepared as electro-responsive smart fluids by dispersing into silicon oil. Silica nanoparticles synthesized by 30 hours of hydrothermal reaction (SiO2-H30) exhibit the highest shear stress of 21.4 Pa under an applied electric field strength of 3.0kV mm-1. Such enhancement in ER performance of SiO2-H30 among various silica nanoparticles are attribute to the reinforcing effect originated from the mixed particle size, which allowing the formation of rigid chain-like structures. Accordingly, this study successfully propose a recycling method of silicon sludge to synthesize silica nanoparticles and their derived ER fluids, which may suggest new possibility to ESG management emphasizing the eco-friendliness.

Empirical Study of Biogas Purification Equipment (바이오가스 정제 설비의 실증 연구)

  • Hwan Cheol Lee;Jae-Heon Lee
    • Plant Journal
    • /
    • v.18 no.4
    • /
    • pp.58-65
    • /
    • 2023
  • In this study, to increase the methane content of biogas supplied from Nanji Water Regeneration Center and to purify impurities, a three-stage membrane purification process was designed and installed to demonstrate operation. The methane concentration of biomethane produced in the 2 Nm3/h purification process was set to three cases: 95%, 96.5%, and 98%, and the membrane area ratio of the membrane was 1:1, 1:2, 1:1:1, The optimum conditions for the membrane area of the separator were derived by changing to five of 1:2:1 and 1:2:2. 3 stage separation membrane process of 30 Nm3/h was installed to reflect the optimum condition of 2 Nm3/h, and biomethane production of 98% or more of methane concentration was demonstrated. As a result of the operation of the 2 Nm3/h refining device, the methane recovery rate at the 98% methane concentration was 95.6% when the membrane area ratio was 1:1 as the result of the two-stage operation of the separator, and the recovery rate of methane at 1:2 was increased to 96.8%. The methane recovery rate of the membrane three-stage operation was highest at 96.8% when the membrane area ratio was operated at 1:2:1. The carbon dioxide removal rate was 16.4 to 96.4% and the 2:2 to 95.7% film area ratio in the two-step process. In the three-step process, the film area ratio was 1:2:1 to 95.4%, and the two-step process showed higher results than the three-step process. In the 30 Nm3/h scale biogas purification demonstration operation, the methane concentration after purification was 98%, the recovery rate of methane was 97.1%, the removal rate of carbon dioxide was 95.7%, and hydrogen sulfide, the cause of corrosion, was not detected, and the membrane area ratio was 1:2:1 demonstration operation, biomethane production with a methane concentration of 98% or higher was possible.

  • PDF

Heavy concrete shielding properties for carbon therapy

  • Jin-Long Wang;Jiade J Lu;Da-Jun Ding;Wen-Hua Jiang;Ya-Dong Li;Rui Qiu;Hui Zhang;Xiao-Zhong Wang;Huo-Sheng Ruan;Yan-Bing Teng;Xiao-Guang Wu;Yun Zheng;Zi-Hao Zhao;Kai-Zhong Liao;Huan-Cheng Mai;Xiao-Dong Wang;Ke Peng;Wei Wang;Zhan Tang;Zhao-Yan Yu;Zhen Wu;Hong-Hu Song;Shuo-Yang Wei;Sen-Lin Mao;Jun Xu;Jing Tao;Min-Qiang Zhang;Xi-Qiang Xue;Ming Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.6
    • /
    • pp.2335-2347
    • /
    • 2023
  • As medical facilities are usually built at urban areas, special concrete aggregates and evaluation methods are needed to optimize the design of concrete walls by balancing density, thickness, material composition, cost, and other factors. Carbon treatment rooms require a high radiation shielding requirement, as the neutron yield from carbon therapy is much higher than the neutron yield of protons. In this case study, the maximum carbon energy is 430 MeV/u and the maximum current is 0.27 nA from a hybrid particle therapy system. Hospital or facility construction should consider this requirement to design a special heavy concrete. In this work, magnetite is adopted as the major aggregate. Density is determined mainly by the major aggregate content of magnetite, and a heavy concrete test block was constructed for structural tests. The compressive strength is 35.7 MPa. The density ranges from 3.65 g/cm3 to 4.14 g/cm3, and the iron mass content ranges from 53.78% to 60.38% from the 12 cored sample measurements. It was found that there is a linear relationship between density and iron content, and mixing impurities should be the major reason leading to the nonuniform element and density distribution. The effect of this nonuniformity on radiation shielding properties for a carbon treatment room is investigated by three groups of Monte Carlo simulations. Higher density dominates to reduce shielding thickness. However, a higher content of high-Z elements will weaken the shielding strength, especially at a lower dose rate threshold and vice versa. The weakened side effect of a high iron content on the shielding property is obvious at 2.5 µSv=h. Therefore, we should not blindly pursue high Z content in engineering. If the thickness is constrained to 2 m, then the density can be reduced to 3.3 g/cm3, which will save cost by reducing the magnetite composition with 50.44% iron content. If a higher density of 3.9 g/cm3 with 57.65% iron content is selected for construction, then the thickness of the wall can be reduced to 174.2 cm, which will save space for equipment installation.

Analysis of the Effect of the Etching Process and Ion Injection Process in the Unit Process for the Development of High Voltage Power Semiconductor Devices (고전압 전력반도체 소자 개발을 위한 단위공정에서 식각공정과 이온주입공정의 영향 분석)

  • Gyu Cheol Choi;KyungBeom Kim;Bonghwan Kim;Jong Min Kim;SangMok Chang
    • Clean Technology
    • /
    • v.29 no.4
    • /
    • pp.255-261
    • /
    • 2023
  • Power semiconductors are semiconductors used for power conversion, transformation, distribution, and control. Recently, the global demand for high-voltage power semiconductors is increasing across various industrial fields, and optimization research on high-voltage IGBT components is urgently needed in these industries. For high-voltage IGBT development, setting the resistance value of the wafer and optimizing key unit processes are major variables in the electrical characteristics of the finished chip. Furthermore, the securing process and optimization of the technology to support high breakdown voltage is also important. Etching is a process of transferring the pattern of the mask circuit in the photolithography process to the wafer and removing unnecessary parts at the bottom of the photoresist film. Ion implantation is a process of injecting impurities along with thermal diffusion technology into the wafer substrate during the semiconductor manufacturing process. This process helps achieve a certain conductivity. In this study, dry etching and wet etching were controlled during field ring etching, which is an important process for forming a ring structure that supports the 3.3 kV breakdown voltage of IGBT, in order to analyze four conditions and form a stable body junction depth to secure the breakdown voltage. The field ring ion implantation process was optimized based on the TEG design by dividing it into four conditions. The wet etching 1-step method was advantageous in terms of process and work efficiency, and the ring pattern ion implantation conditions showed a doping concentration of 9.0E13 and an energy of 120 keV. The p-ion implantation conditions were optimized at a doping concentration of 6.5E13 and an energy of 80 keV, and the p+ ion implantation conditions were optimized at a doping concentration of 3.0E15 and an energy of 160 keV.

Conservation Treatment and Study on Manufacturing Techniques of Jija Chongtong Gun in the Middle of Joseon Dynasty (조선 중기 제작된 지자총통의 보존처리와 제작기법 연구 -동아대학교 석당박물관 소장 보물 지자총통을 중심으로-)

  • Nam Dohyeon;Park Younghwan;Lee Jaesung
    • Conservation Science in Museum
    • /
    • v.30
    • /
    • pp.23-46
    • /
    • 2023
  • The Jija Chongtong Gun, owned by Seokdang Museum of Dong-A University, is a tubedstyle heavy weapon of the battlefield in the mid-Joseon Dynasty and is the second largest firearm after Cheonja Chongtong. The original surface color of the Jija Chongtong Gun was obscured by foreign substances and therefore it was judged that its condition requires the conservation treatment. For stable conservation treatment, gamma ray and X-ray non-destructive transmission surveys was conducted to determine the internal structure and conservation condition. And the component analysis on the material components and surface contaminants of Jija Chongtong Gun was conducted by utilizing the p-XRF component analysis, SEM-EDS component analysis, and XRD analysis. As a result of the gamma-ray and X-ray non-destructive transmission investigation, a large amount of air bubbles was observed inside Jija Chongtong Gun, and the part that appeared to be a chaplet by visual observation was not identified. As a result of gamma-ray and p-XRF component analysis, it was confirmed that Jija Chongtong Gun was bronze made of copper (Cu), tin (Sn), and lead (Pb) alloy. As a result of surface analysis of foreign substances using SEM-EDS, it was confirmed that the main components of white foreign substances were calcium (Ca), sulfur (S), and titanium (Ti). Titanium was presumed to be titanium dioxide (TiO2), the main component of white correction fluid. The red foreign substance was confirmed to contain barium (Ba) as its main ingredient, and was presumed to be barium sulfate (BaSO4), an extender pigment in paint. White and red contaminants, mainly composed of titanium and barium, are presumed to have been deposited on the surface in recent years. The yellow foreign substances were confirmed to be aluminum (Al) and silicon (Si), and were presumed to have originated from soil components. As a result of SEM-EDS and XRD component analysis, the white foreign substance was confirmed to be gypsum (CaS). Based on the results of component analysis, surface impurities were removed, stabilization treatment, and strengthening treatment were performed. During the conservation process, unknown inscriptions Woo (右), Byeong (兵), Sang (上), and Yi (二) were discovered through a portable microscope and precise 3D scanning. In addition, the carving method, depth, and width of the inscription were measured. Woo Byeong Sang is located above Happo Fortress in Changwon, and Yi can be identified as the second hill.

Experimental Investigation of Stannite-Sphalerite System In Relation to Ores (황석석일섬아연석계(黃錫石一閃亞鉛石系)의 실험연구(實驗硏究)와 천연건물(天然鍵物)에의 활용(活用))

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.1-23
    • /
    • 1975
  • The subject of this study deals with phase relations between stannite ($Cu_2FeSnS_4$) and sphalerite (${\beta}-ZnS$)/wurtzite (${\alpha}-ZnS$). The phase relations were systematically investigated from liquidus temperature to $400^{\circ}C$ under controlled conditions. ${\beta}-stannite$ (tetragonal) is stable up to $706{\pm}5^{\circ}C$, where it inverts to a high-temperature polymorph ${\alpha}-stannite$ (cubic) melting congruently at $867{\pm}5^{\circ}C$. Sphalerite (cubic, ${\beta}-ZnS$) inverts at $1013{\pm}3^{\circ}C$ to wurtzite, which is the hexagonal hightemperature polymorph of ZnS. Between ${\alpha}-stannite$ and sphalerite a complete solid solution series exists above approximately $870^{\circ}C$ up to solidus temperature. The melting temperature of ${\alpha}-stannite$ rises towards sphalerite and reaches a maximum at $1074{\pm}3^{\circ}C$, which is the peritectic with the composition of 91 wt. % sphalerite and 9 wt. % ${\alpha}-stannite$. At this temperature, wurtzite takes only 5wt. % ${\alpha}-stannite$ in solid solution which decreases with increasing temperature. The inverson temperature of ${\alpha}/{\beta}-stannite$ is lowered with increasing amounts of sphalerite in solid solution down to $614{\pm}7^{\circ}C$, which is the eutectoid with the composition of 13 wt. % sphalerite and 87 wt. % ${\alpha}-stannite$. Here, ${\beta}-stannite$ contains only 10wt. % sphalerite in solid solution. With decreasing temperature, the ranges of the solid solution on both sides of the system narrow. The phase relations in the above pure system changed due to the FeS impurities in the sphalerite solid solution. The eutectoid increased from $614{\pm}7^{\circ}C$ up to $695{\pm}5^{\circ}C$ (5 wt. % FeS) and $700{\pm}5^{\circ}C$ (10wt. % FeS), while the peritectic decreased from $1074{\pm}3^{\circ}C$ down to $1036{\pm}3^{\circ}C$ (wt. %FeS) and $987{\pm}3^{\circ}C$ (10wt. %FeS). A most notable change is the appearance of non-binary regions. An important feature is the combination of this study system with the experimental results reported by Sprinfer (1972). If a stannite-kesterite solid solution is used in the place of stannite as a bulk composition, the inversion temperature is lowered to less than $400^{\circ}C$ which belongs to temperatures of the hydrothermal region.

  • PDF