• Title/Summary/Keyword: Impurities

Search Result 1,327, Processing Time 0.026 seconds

Analysis of Organic Impurities in Terephthalic Acid Manufacturing Process (테레프탈산 제조공정 중의 유기불순물 분석)

  • Kim, Dong Bum;Cha, Woonou;Kwak, Kyu Dae
    • Applied Chemistry for Engineering
    • /
    • v.7 no.6
    • /
    • pp.1204-1208
    • /
    • 1996
  • The organic impurities are formed in the p-xylene oxidation process to terephthalic acid(TPA) and they are present in the filtrate(mother liquor) solution or the TPA particles. The organic impurities present in the p-xylene oxidation are formed through side reactions or incomplete reaction. In this study, the main organic impurities, such as benzoic acid, p-toluic acid, p-tolualdehyde, 4-carboxybenzaldehyde, phthalic acid, isophthalic acid, trimellitic acid, and 4-hydroxymethyl benzoic acid were identified simultaneously by gas chromatograghy. The above impurities were reacted with bis(trimethylsilyl)trifluoroacetamide in the mixture of internal standard solution and pyridine solution by trimethylsilylation, where the internal standard solution was made by 99% bis (trimethylsilyl)trifluoroacetamide and 1% trimethylchlorosilane. The main organic impurities above mentioned can be analyzed quantitatively within 50 min.

  • PDF

Absorption and Thermal Properties According to Ionic Impurities of Semiconductive Materials for Underground Power Cable (지중 전력케이블용 반도전재료의 이온성 불순물에 따른 흡습 및 열적특성)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.05b
    • /
    • pp.133-137
    • /
    • 2004
  • In this paper, we investigated impurities content, absorption properties, and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens and absorption properties were measured by ICP-AES (Inductively Coupled Plasma Atomic Emission Spectrometer) and Karl Fisher. And high temperature, heat degradation initiation temperature, and heat weight loss were measured by TGA (Thermogravimetric Analysis). The dimension of measurement temperature was 0$[^{\circ}]$ to 800$[^{\circ}]$, and rising temperature was 10$[^{\circ}/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also absorption amount was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat degradation initiation temperature from the TGA results was decreased according to increasing the content of carbon black. All over, heat stabilities were EEA>EBA>pEVA. That is, heat stabilities of EVA containing the weak VA(vinyl acetate) against heat was measured the lowest.

  • PDF

Removal of Cu impurities in LiBr solution using cyclone electrowinning method (싸이클론 전해환원방법을 이용한 LiBr 용액내의 Cu 불순물 제거에 관한 연구)

  • Da Jung Park;Kyu Hwan Lee
    • Journal of the Korean institute of surface engineering
    • /
    • v.57 no.2
    • /
    • pp.92-97
    • /
    • 2024
  • The LiBr aqueous solution, which is the absorption liquid of absorption refrigerator, must be replaced periodically because the concentration of impurities such as Cu2+, Fe2+, Ca2+, etc., increases due to corrosion of the tubes as the period of use increases, and the refrigeration efficiency decreases significantly. In order to reuse the waste absorption liquid, flocculation-precipitation method is mainly applied to precipitate the impurities, which requires hundreds of times the concentration of impurities and generates additional waste. In this study, a process for removing Cu ion impurities from cyclone electrolyzer by electrolytic reduction is presented in a small-scale facility without additional waste. It was confirmed that Cu ion impurities can be removed down to 1 ppm by electrolytic reduction process, and to further improve the removal rate, the mass transfer rate was increased by using a cyclone electrolyzer. The removal rate of Cu ions increased with the increase of flow rate and current density, and it was confirmed that Cu was removed at a rate of 1.48 ppm/h under the condition of 330 mL/sec and 2.5 mA/cm2.

Analytical methods to manage potential impurities in drug substances (의약품 중 잠재적 불순물 관리를 위한 분석법 연구 동향)

  • Park, Kyung Min;Kim, Won Mi;Ahn, Su Hyun;Lee, Ha Lim;Hwang, Su Hyeon;Lee, Wonwoong;Hong, Jongki
    • Analytical Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.93-115
    • /
    • 2022
  • Potential impurities in pharmaceuticals could be produced during manufacture, distribution, and storage and affect quality and safety of pharmaceuticals. In particular, highly reactive impurities could result in carcinogenic (mutagenic) effects on human body. International Conference on Harmonisation (ICH) has provided M7(R1) guideline for "Assessment and Control of DNA Reactive (Mutagenic) Impurities in Pharmaceuticals to Limit Potential Carcinogenic Risk" and recommended an adoption of this guideline to the authorities. ICH M7(R1) guideline provides classification, accepted intakes, and controls of potential impurities in pharmaceuticals. However, since appropriate and unified analytical methods for impurities in pharmaceuticals have not been provided in this guideline, most potential impurities in pharmaceuticals are still difficult to manage and supervise by pharmaceutical companies and regulatory authorities, respectively. In this review, we briefly described definition of unintended mutagenic impurities, basic information in ICH M7(R1) guideline, and analytical methods to determine potential impurities. This review would be helpful to manage and supervise potential impurities in pharmaceuticals by pharmaceutical companies and regulatory authorities.

Identification of the impurities in the technical product of Atonic (Atonic 원제의 부성분 구조 확인)

  • Kyung, Kee-Sung;Chung, Chang-Kook;Lee, Jae-Koo
    • The Korean Journal of Pesticide Science
    • /
    • v.8 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • In order to determine the amounts of impurities and to identify the chemical structures of the impurities in the technical product of the plant growth regulator Atonic, the extracts of diethyl ether and dichloromethane were analyzed with GC-FID and GC-MSD. resulting in detection of five impurities and identification of their chemical structures. The amount of the active ingredient atonic in the technical product was about 84% and those of the impurities ranged from 0.24 to 10.74%. The identified impurities in this technical product are 2-methoxyphenol (guaiacol, m/z 124), 2-chloro-6-methoxyphenol and/or 4-chloro-6-methoxyphenol (m/z 158), 1,2-dimethoxy-4-nitrobenzene (m/z 183), and 2,6-bis(1,1-dimethylethyl)-4-methylphenol (m/z 220), suggesting that they are not hazardous impurities.

A Study on the Management Criteria of Chemiclas Impurities for Drinking Water Treatment by Risk Assessment (건강위해성 평가에 의한 정수용 수처리제의 불순물 관리 기준 설정 방법에 관한 연구)

  • Chung, Yong;Beck, Young-seog;Kwon, Dong-sik;Lee, Ki-gong;Kang, Hyeong-seok
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.432-436
    • /
    • 2004
  • The principle and methodology of risk assessment was applied to establish the quality standard of potential impurities of drinking water treatment chemicals. The impurities(arsenic, lead, cadmium, chromium, mercury, etc.) are regulated as the contained quantity of chemicals in Korea while they are regulated as the quality standard with the idea of 10% of the national safety drinking water standard in U.S.A(NSF) and Japan(JWWA). According to risk assessment of the current standard implemented in Korea, the excess cancer risk of arsenic and lead were determined in around $10^{-5}$ and the hazard quotient(HQ) of cadmium and chromium were below $10^{-2}$, respectively. And the standard concentration of the impurities are regulated as much as 2%~6% of the national drinking water quality standard. The values are more enforced rather than the standards in U.S.A(NSF) and Japan(JWWA) regulating the concentration of impurities the 10% of the national drinking water quality standard. We conclude that the impurities standard of drinking water treatment chemicals should be reconsidered comprehensively concerning the national safety drinking water quality standard and risk assessment.

A Study on Thermal Properties and Impurities Measurement of Semiconductive Shield by ICP-AES (ICP-AES에 의한 반도전재료의 불순물 측정 및 열적특성에 관한 연구)

  • Lee, Kyoung-Yong;Choi, Yong-Sung;Park, Dae-Hee
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.489-494
    • /
    • 2004
  • In this paper, we investigated impurities content and thermal properties showing by changing the content of carbon black which is semiconductive materials for underground power transmission. Specimens were made of sheet form with the three of existing resins and the nine of specimens for measurement. Impurities content of specimens was measured by ICP-AES(Inductively Coupled Plasma Atomic Emission Spectrometer), and density of specimens were measured by density meter. And then heat capacity(${\Delta}H$) and melting temperature(Tm), specific heat(Cp) were measured by DSC(Differential Scanning Calorimetry). The dimension of measurement temperature was $0[^{\circ}C]\;to\;200[^{\circ}C]$, and rising temperature was $4[^{\circ}C/min]$. Impurities content was highly measured according to increasing the content of carbon black from this experimental result also density was increased according to these properties. Specially, impurities content values of the A1 and A2 of existing resins were measured more than 4000[ppm]. Heat capacity, melting temperature, and specific heat from the DSC results were simultaneously decreased according to increasing the content of carbon black. Because metallic impurities of carbon black having Fe, Co, Mn, A1 and Zn are rapidly passed kinetic energy increasing the number of times breaking during the unit time with the near particles according to increasing vibration of particles by the applied heat energy.

  • PDF

Characterization of degradation products of the Balsalazide by Mass spectrometry: Optimization of stability-indicating HPLC method for separation and quantification of process related impurities of Balsalazide

  • Chilakabattina Naga Narasimha Babu;Ch. Srinivasa Reddy;Bhagya Kumar Tatavarti;M. Radha Madhavi;Venkateswara Rao Anna
    • Analytical Science and Technology
    • /
    • v.37 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • The study aimed to investigate a novel approach by utilizing liquid chromatography (LC) and liquid chromatography-mass spectrometry (LC-MS) to separate, identify and characterize very nominal quantities of degradation products (DPs) of balsalazide along with its process related impurities without isolation from their reaction mixtures. The impurities along with balsalazide were resolved on spherisorb ODS2 (250×4.6 mm, 5.0 ㎛) column at room temperature using 0.2 M sodium acetate solution at pH 4.5 and methanol in the ratio of 55:45 (v/v) as mobile phase pumped isocratically at 1.0 mL/min as mobile phase and UV detection at 255 nm. The method shows sensitive detection limit of 0.003 ㎍/mL, 0.015 ㎍/mL and 0.009 ㎍/mL respectively for impurity 1, 2 and 3 with calibration curve liner in the range of 50-300 ㎍/mL for balsalazide and 0.05-0.30 for its impurities. The balsalazide pure compound was subjected to stress studies and a total of four degradation products (DPs) were formed during the stress study and all the DPs were characterized with the help of their fragmentation pattern and the masses obtained upon LC-MS/MS. The DPs were identified as 3-({4-[(E)-(4-hydroxyphenyl) diazenyl]benzoyl}amino)propanoic acid (DP 1), 4-[(E)-(4-hydroxyphenyl)diazenyl] benzamide (DP 2), 5-[(E)-(4-carbamoylphenyl)diazenyl]-2-hydroxybenzoic acid (DP 3) and 3-({4-[(E)-phenyldiazenyl]benzoyl}amino)propanoic acid (DP 4). Based on findings, it was concluded that, the proposed method was successfully applicable for routine analysis of balsalazide and its process related impurities in pure drug and formulations and also applicable for identification of known and unknown impurities of balsalazide.

Mineralogical Analysis and Mechano-Chemical Purification of Natural Silica Ore for High Purity Silica Powder

  • Park, Jesik;Lee, Churl Kyoung;Lee, Hyun-Kwon
    • Korean Journal of Materials Research
    • /
    • v.26 no.6
    • /
    • pp.306-310
    • /
    • 2016
  • To produce 4N grade high-purity silica powder from natural ore, the mineralogical characteristics of natural silica ore were investigated and their effects on the purification process were revealed. The Chinese silica mineral ore used was composed of iron and aluminum as main impurities and calcium, magnesium, potassium, sodium, and titanium as trace impurities; these trace impurities generally exist as either single oxides or complex oxides. It was confirmed that liberation and acidic washing of the impurities were highly dependent on the particle size of the ground silica ore and on its mineralogical characteristics such as the distribution and phases of existing impurities. It is suggested that appropriate size reduction of silica ore should be realized for optimized purification according to the origin of the natural silica ore. A single step purification process, the mechano-chemical washing (MCW) process, was proposed and verified in comparison with the conventional multi step washing process.

Characteristics of Tantalum Powder by Conditions of After Treatment (후처리 조건에 따른 탄탈륨 분말의 특성)

  • 윤재식;박형호;배인성;김병일
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.344-347
    • /
    • 2003
  • Pure tantalum powder has been produced by combining Na as a reducing agent, $K_2$TaF$_{7}$ as feed material, KCl and KF as a diluent in a stainless steel (SUS) bomb, using the method of metallothermic reduction. And we examined various types of after-treatment that affect the high purification of powder. A significant amount of impurities contained in recovered powder was removed in various conditions of acid washing. In particular, 20% (HCl + HNO$_3$) was effective in removing heavy metal impurities such as Fe, Cr and Ni, 8% H$_2$SO$_4$ + 8% $Al_2$(SO$_4$)$_3$ in removing fluorides such as K and F from non-reactive feed material, and 2% $H_2O$$_2$ + 1 % HF in removing oxides that formed during reaction. Significant amounts of oxygen and part of light metal impurities could be removed through deoxidation and heat treatment process. On the other hand, because it is difficult to remove completely heavy metal impurities such as Fe, Cr, and Ni through acid washing or heat treatment process if their contents are too high, it is considered desirable to inhibit these impurities from being mixed during the reduction process as much as possible.