• Title/Summary/Keyword: Impulsive differential equation

Search Result 43, Processing Time 0.02 seconds

A New Method of Collision Mode Evolution for Three-Dimensional Rigid Body Impact With Friction

  • Park, Jong-Hoon;Chung, Wan-Kyun;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1769-1775
    • /
    • 2004
  • In presence of collision between two rigid bodies, they exhibit impulsive behavior to generate physically feasible state. When the frictional impulse is involved, collision resolution can not be easily made based on a simple Newton's law or Poisson's law, mainly due to possible change of collision mode during collision, For example, sliding may change to sticking, and then sliding resumes. We first examine two conventional methods: the method of mode evolution by differential equation, and the other by linear complementarity programming. Then, we propose a new method for mode evolution by solving only algebraic equations defining mode changes. Further, our method attains the original nonlinear impulse cone constraint. The numerical simulation will elucidate the advantage of the proposed method as an alternative to conventional ones.

  • PDF

A Plastic Analysis of Structures under the Impact Loading (충격하중(衝擊荷重)을 받는 구조물(構造物)의 소성(塑性)모델에 따른 거동분석(擧動分析))

  • Ahn, Byoung Ki;Lee, Sang Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.21-33
    • /
    • 1992
  • Under the intense-impulsive loading, structures are subjected to the wide range of pressures at an instantaneous time. The constitutive laws capable to describe the material behavior under the extreme pressure as well as the low pressure are necessary for the analysis of the structural behavior under the intense -impulsive loadings. In this study, two plastic models, the pressure independent Von-Mises model and the pressure dependent Drucker-Prager model, are employed for the wave propagation analysis. Governing equations of this study are conservation equations of momentum and mass in Lagrangian coordinate system which is fixed to the material. Due to the shock-front which violates the continuity assumptions inherent in the differential equations numerical artificial viscosity is used to spread the shock front over several computational zones. These equations are solved by Finite Difference Method with discretized time and space coordinates. The associate normality flow rule as a plastic theory is implemented to find the plastic strains.

  • PDF

Nonlinear Anisotropic Diffusion Using Adaptive Weighted Median Filters (적응 가중 미디언 필터를 이용한 영상 확산 알고리즘)

  • Hwang, In-Ho;Lee, Kyung-Hoon;Kim, Woong-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.5C
    • /
    • pp.542-549
    • /
    • 2007
  • Recently, many research activities in the image processing area are concentrated on developing new algorithms by finding the solution of the 'diffusion equation'. The diffusion algorithms are expected to be utilized in numerous applications including noise removal and image restoration, edge detection, segmentation, etc. In this paper, at first, it will be shown that the anisotropic diffusion algorithms have the similar structure with the adaptive FIR filters with cross-shaped 5-tap kernel, and this relatively small-sized kernel causes many iterating procedure for satisfactory filtering effects. Moreover, it will also be shown that lots of modifications which are adopted to the conventional Gaussian diffusion method in order to weaken the edge blurring nature of the linear filtering process increases another computational burden. We propose a new Median diffusion scheme by replacing the adaptive linear filters in the diffusion process with the AWM (Adaptive Weighted Median) filters. A diffusion-equation-based adaptation scheme is also proposed. With the proposed scheme, the size of the diffusion kernel can be increased, and thus diffusion speed greatly increases. Simulation results shows that the proposed Median diffusion scheme outperforms in noise removal (especially impulsive noise), and edge preservation.