• Title/Summary/Keyword: Impulse response method

Search Result 379, Processing Time 0.033 seconds

Optimization of Wind Power Dispatch to Minimize Energy Storage System Capacity

  • Nguyen, Cong-Long;Lee, Hong-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.1080-1088
    • /
    • 2014
  • By combining a wind turbine with an energy storage system (ESS), we are able to attenuate the intermittent wind power characteristic making the power derived from a wind farm dispatchable. This paper evaluates the influence of the phase delay of the low-pass filter in the conventional smoothing power control on the ESS capacity; longer phase delays require a larger ESS capacity. In order to eliminate the effect of the phase delay, we optimize the power dispatch using a zero-phase low-pass filter that results in a non-delayed response in the power dispatch. The proposed power dispatching method significantly minimizes the ESS capacity. In addition, the zero-phase low-pass filter, which is a symmetrical forward-reverse finite impulse response type, is designed simply with a small number of coefficients. Therefore, the proposed dispatching method is not only optimal, but can also be feasibly applied to real wind farms. The efficacy of the proposed dispatching method is verified by integrating a 3 MW wind turbine into the grid using wind data measured on Jeju Island.

A Study on the Sloshing Impact Response Analysis for the Insulation System of Membrane Type LNG Cargo Containment System (LNG 탱크 방열구조의 슬로싱 충격 응답 해석법에 관한 연구)

  • Nho, In-Sik;Ki, Min-Seok;Lee, Jae-Man;Kim, Sung-Chan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.531-538
    • /
    • 2011
  • To ensure the structural integrity of membrane type LNG tank, the rational assessment of impact pressure and structural responses due to sloshing should be preceded. The sloshing impact pressures acting on the insulation system of LNG tank are typical irregular loads and the structural responses caused by them also very complex behaviors including fluid structure interaction. So it is not easy to estimate them accurately and huge time consuming process would be necessary. In this research, a simplified method to analyze the dynamic structural responses of LNG tank insulation system under pressure time histories obtained by sloshing model test or numerical analysis was proposed. This technique basically based on the concept of linear combination of the triangular response functions which are obtained by the transient response analysis under the unit triangular impact pressure acting on structures in time domain. The validity of suggested method was verified through the example calculations and applied to the structural analysis of real Mark III type insulation system using the sloshing impact pressure time histories obtained by model test.

  • PDF

A Stduy on Acoustics Estimation of PANSORI hall by Scale Model (축척모형을 이용한 판소리 홀의 음향평가에 관한 연구)

  • Shin, Young-Moo;Chung, Sa-Hee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.6
    • /
    • pp.66-72
    • /
    • 1996
  • In order to the sound effects and acoustics estimation of PANSORI hall, we are researched into the impulse response measuring and convolution integral of dry music(PANSORI) by using 1/10 scale model. Results are as follwo. First, impulse responses are measured by spark sound of electrodes and it is absolutely necessary many times of synchronous calculating for the obtain to enough S/N ratio. Second, a simulation technique of scale model is confirmed one of an effectual method of indoor acoustics estimation. Further, using the these new techniques and hearing test, its are recognized that reverberation time of PANSORI hall is about $1.0{\sim}$12.$ second suitable.

  • PDF

Frequency domain elastic full waveform inversion using the new pseudo-Hessian matrix: elastic Marmousi-2 synthetic test (향상된 슈도-헤시안 행렬을 이용한 탄성파 완전 파형역산)

  • Choi, Yun-Seok;Shin, Chang-Soo;Min, Dong-Joo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.329-336
    • /
    • 2007
  • For scaling of the gradient of misfit function, we develop a new pseudo-Hessian matrix constructed by combining amplitude field and pseudo-Hessian matrix. Since pseudo- Hessian matrix neglects the calculation of the zero-lag auto-correlation of impulse responses in the approximate Hessian matrix, the pseudo-Hessian matrix has a limitation to scale the gradient of misfit function compared to the approximate Hessian matrix. To validate the new pseudo- Hessian matrix, we perform frequency-domain elastic full waveform inversion using this Hessian matrix. By synthetic experiments, we show that the new pseudo-Hessian matrix can give better convergence to the true model than the old one does. Furthermore, since the amplitude fields are intrinsically obtained in forward modeling procedure, we do not have to pay any extra cost to compute the new pseudo-Hessian. We think that the new pseudo-Hessian matrix can be used as an alternative of the approximate Hessian matrix of the Gauss-Newton method.

  • PDF

Presentation of a Fault Detecting Method for Power Transmission Line using M-sequence

  • Nishiyama, E.;Kuwanmi, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.86.2-86
    • /
    • 2001
  • The method of pinpointing the place of the abnormalities of a power transmission system analyzes the voltage and the current information from the both ends of a power [1-2]. Now, there are only current and a voltage measuring instrument every about 20km, and the present condition is specifying the breaking down point by viewing of a worker in it. In this research, a power line circuit is assumed to be a line type system, and M-sequence is impressed to the end, it receives at other ends, the crosscorrelation function of input and output is taken, an impulse response is calculated, and the method in comparison with the time of normal is proposed. By this technique ...

  • PDF

Blind Signal Processing for Medical Sensing Systems with Optical-Fiber Signal Transmission

  • Kim, Namyong;Byun, Hyung-Gi
    • Journal of Sensor Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • In many medical image devices, dc noise often prevents normal diagnosis. In wireless capsule endoscopy systems, multipath fading through indoor wireless links induces inter-symbol interference (ISI) and indoor electric devices generate impulsive noise in the received signal. Moreover, dc noise, ISI, and impulsive noise are also found in optical fiber communication that can be used in remote medical diagnosis. In this paper, a blind signal processing method based on the biased probability density functions of constant modulus error that is robust to those problems that can cause error propagation in decision feedback (DF) methods is presented. Based on this property of robustness to error propagation, a DF version of the method is proposed. In the simulation for the impulse response of optical fiber channels having slowly varying dc noise and impulsive noise, the proposed DF method yields a performance enhancement of approximately 10 dB in mean squared error over its linear counterpart.

Nonlinear Response Analyses for a Barge-Mounted Plant with Dolphin Mooring Systems in Irregular Waves (불규칙파 중에서 돌핀 계류된 바아지식 해상공장에 대한 비선형 응답 해석)

  • 이호영;신현경;염재선
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.1-8
    • /
    • 2000
  • The time simulation of motion responses of dolphin-moored BMP in waves is presented. The equation of motion based on Cummin's theory of impulse responses are employed, and solved in time domain by using the Newmark $\beta$ method. The hydrodynamic coefficient and first order wave exciting forces involved in the equations are obtained from a three-dimensional panel method in the frequency domain. The second order wave drift forces and mooring for dolphin system are taken into account. As for numerical example, time domain analysis are carried out for a BMP in irregular wave condition.

  • PDF

On Implementing the Digital DTMF Receiver Using PARCOR Analysis Method (PARCOR 분석 방법에 의한 디지털 DTMF 수신기 구현에 관한 연구)

  • Ha, Pan Bong;ANN, Souguil
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.196-200
    • /
    • 1987
  • The following methods are proposed for implementing digital dual tone multi-frequency (DTMF) receiver: using infinite impulse response(IIR) digital filters, period-counting algorithm, discrete Fourier transform(DFT), and fast Fourier transform(FFT)[2]. The PARCOR(Partical Correlation) analysis method which has been widly used in the speech signal processing area is applied to the dual tone multi-frequency(DTMF) signal detection. This method is easy to implement digitally and stronger to digit simulation of speech than any other methods proposed up to date. Since sampling rate of 4KHz is used in the DTMF receiver for the detection of input DTMF signal originally sampled at 8KHz, it effects two times higher multiplexing efficiency.

  • PDF

A Model Test of IE and IR Method to Detect the Cavity Underneath the Concrete Structure (콘크리트 구조물 하부의 공동 탐지를 위한 충격반향(IE) 및 충격응답(IR) 기법의 모형 실험)

  • Noh, Myung-Gun;Oh, Seok-Hoon
    • Journal of the Korean earth science society
    • /
    • v.32 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • The impact echo and impulse response methods were applied to the safety inspection of concrete structure, which has the rear cavity. The concrete structure model used in this study was divided into four sections, pure concrete, concrete+cavity, reinforced concrete with iron bar, and reinforced concrete+cavity, respectively. Previous study performed by authors have showed a possibility of success to use these method for detection of the rear cavity of concrete structure. Therefore, we tried to get more enhanced result with IE and IR methods through this study. Especially, IE and IR methods are relatively accurate to map the point of measurement, which makes it possible to interpret the depth of the concrete bed and effect by rear cavity with confidence. Followings were revealed from the results; the IE method shows some small peak zones probably indicating the rear cavity in the frequency lower than the resonance frequency and the changes of mobility and dynamic stiffness in the IR method indicate the weak zones. The proposed methods can be used to delineate the weak zones of the concrete structure.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.