• Title/Summary/Keyword: Improvement of Water quality

Search Result 1,146, Processing Time 0.027 seconds

Assessing the Benefits of Water Quality Improvements Using Contingent Valuation Method: Case Study of the Kumgang Area (가상 가치 접근법을 이용한 수질 개선 사업의 편익 측정: 금강 유역 사례)

  • Cho, Hong-Jin;Lee, Byoung-Nam;Kim, Ji-Soo
    • IE interfaces
    • /
    • v.11 no.3
    • /
    • pp.209-218
    • /
    • 1998
  • This paper is concerned with the assessment of benefits from water quality improvements. The contingent valuation method (CVM) is employed to directly measure the value of the project for the improvement of the water pollution in the Kumgang area. The perceived value of the improved water quality is investigated by using questionnaires to those concerned living near water-polluted area. The questionnaire includes such questions as the amount to willingly pay, the motivation to pay, the reasons of rejecting the payment, and some socio-economic data. The results of the survey show that (1) non-use value of the environmental goods is perceived to be more important than use-value of the environmental goods; (2) "willingness to pay" for the improved water quality varies according to the degree of educational level. income level and ages; (3) the resistance to pay for the project comes from the "polluter's pay principle".

  • PDF

Effects of flushing techniques on water quality at extremity with low chlorine residuals in drinking water distribution systems (수질 취약지역 및 관말에서 플러싱 적용 먹는물 수질 개선 효과)

  • Ko, Kyung-Hoon;Kweon, Ji-Hyang;Kim, In-Ja;Lim, Woo-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • Several complaints from consumers on red or turbid waters were often filed at the same places although various efforts were made to improve water quality in the drinking water plant. The red water problems were occurred due to corrosion of main water pipe, especially at extremity. The low concentrations of chlorine indicating poor water quality were detected at the problematic location. To solve the poor water quality at the extremity, flushing techniques, i.e., conventional flushing, unidirectional flushing, and continuous flushing, were recently practiced. In this study, effects of conventional flushing on water qualities were examined by comparing turbidity and residual chlorine before and after flushing. In addition, more detailed analyses on water qualities at the tap water were conducted to learn a reduction pattern during flushing. Five items from geographic information system of water distribution were used to obtain a relationship with water quality, washing duration or amounts of washing water. The flushing was effective to meet the National Drinking Water Quality Standard with simple and relatively short time operation. The key operational parameter in flushing was amounts of washing water which should be estimated based on water quality of the consumer's tap water. The positive relationship between the residual chlorine and pipe length implied that detention time in the pipeline was the main cause of the complaints. More experiments on effectiveness of flushing are needed to determine reasonable strategies of flushing.

Characteristics of Water Quality in Wangsong Reservoir and Its Inflow Streams (왕송저수지 및 유입하천의 수질특성에 관한 연구)

  • Cho, Deok-Hee;Lee, Kyong-Hee;Han, Song-Hee;Song, Jin-Ho;Kwon, Sang-Jo;Kim, Bok-Jun;Lee, Ki-Jong;Lee, Jeong-Bok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.2
    • /
    • pp.201-208
    • /
    • 2012
  • Wangsong Reservoir needs a systematic approach that can control water purity and water quality improvement. This study was carried out to assess the seasonal variation of water quality and the effect of pollutant being loaded from watershed in a sallow eutrophic reservoir(Wangsong Reservoir) from March to November, 2011. Wangsong Reservoir, located in Uiwang City, has the capacity of 2 million $m^{3}$ in irrigation water supply with the drainage of 4.2 $km^{2}$. Average concentrations of BOD, COD, T-N, T-P, and Chloropyll-a in Wangsong Reservoir were 5.8 mg/L, 9.7 mg/L, 4.299 mg/L, 0.106 mg/L and 73.1 mg/$m^{3}$, respectively. In the inflow streams and treated sewage of Wangsong Reservoir, the T-N concentrations of 4.114 - 14.619 mg/L were higher than those in the Reservoir and the other pollutants were lower. As a result of investigation, Wangsong Reservoir exceeded the agricultural water standard level due to algal growth and accumulation from the upper streams and sewage. In order to achieve the targeted water quality in Wangsong Reservoir, it is required to be decreased in pollutants of internal and inflow streams.

Potential of a Bioelectrochemical Technology for the Polishing of Domestic Wastewater Treatment Plant Effluent (생물전기화학기술을 이용한 하수처리장 방류수 수질개선 가능성)

  • Song, Young-Chae;Oh, Gyung-Geun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2015
  • The study on the improvement of discharge water quality from domestic wastewater treatment plant (DWTP) was performed in a filter type bioelectrochemical system. The COD removal efficiency for a synthetic discharge water was about 88%, and the effluent COD was less than 5mg/L. The nitrification efficiency of the bioelectrochemical system was over 97%, but a considerable amount of the nitrogen was remained as nitrate form in the effluent. The total nitrogen removal efficiency was only around 30%. There are no significant differences in the removal of COD and nitrogen at 0.6 and 0.8V of the applied voltages between anode and cathode. The removal of COD and nitrogen in the system were quite stable when the HRT ranged from 60 to 15 minutes, and at 10 minutes of HRT, the nitrification efficiency was slightly decreased. The performance of the bioelectrochemical system has quickly recovered from the shocks in the influent due to high concentration of COD and nitrogen. For the effluent that discharged from the DWTP, the removal efficiencies of COD and total nitrogen from the bioelectrochemical system were 50 and 30%, respectively. Thus the bioelectrochemical system was a feasible process for further polishing the effluent quality from DWTP.

Development of an AI-Based Aquaculture Water Quality Monitoring and Control System (AI 기반 양식장 수질 모니터링 및 제어 시스템 개발)

  • Dong-Yong An;Hyun Sim
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.5
    • /
    • pp.883-894
    • /
    • 2024
  • This study aims to develop an AI-based aquaculture water quality monitoring and control system. Reliable and durable sensors were developed through the design of embedded boards and PCB fabrication, and communication modules were integrated for data collection and transmission. Water quality data from various tanks were collected and analyzed using machine learning techniques to build predictive and control models for water quality changes. The results showed that the AI-based water quality control system demonstrated high prediction accuracy and was effective in real-time monitoring and controlling the water quality.

Analysis of Water Quality and Aquatic Ecosystem Improvement Effect According to TMDL in Jinwi River Watershed (진위천수계의 오염총량관리에 따른 수질 및 수생태계 개선 효과 분석)

  • Im, Jihyeok;Kong, Dongsoo
    • Journal of Environmental Impact Assessment
    • /
    • v.30 no.6
    • /
    • pp.355-360
    • /
    • 2021
  • As the domestic water management policy shifted from concentration-oriented water management to load management-centered Total Maximum Daily Load (TMDL), water quality and aquatic ecosystems brought changed. However, it was difficult to determine whether the water quality and the health of the aquatic ecosystem improved after the implementation of the TMDL due to changes in pollutant sources and discharge fluctuations ect, so the effect was analyzed using a log-linear model and biological indicators (Benthic Macroinvertebrates). As a result, BOD and T-P concentrations in the Jinwi River Watershed were reduced by 30% and 35%, showed the effect of improving water quality, however the benthic macroinvertebrates index (BMI) downgraded from grade D to grade E. Therefore, efforts to cultivate ecologicalrivers are necessary to upgrade the health of the aquatic ecosystem in the river watershed.

Estimating Willingness to Pay for the Tap Water Quality Improvement in Busan Using Nonparametric Approach (비모수추정법에 의한 부산시 가정용수 수질개선에 대한 지불의사액 추정)

  • Pyo, Hee-Dong;Park, Cheol-Hyung;Choo, Jae-Wook
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.125-134
    • /
    • 2011
  • The paper is to estimate willingness-to-pay (WTP) for residential water quality improvement in Busan, using non-parametric approach. There are several significant advantages of non-parametric approach, compared to parametric methods. That is, no probability distribution assumption is necessary so that there are no needs to assume or test goodness of fit, model specification and heteroscedasticity statistically. For the reliability and the validity of contingent valuation method a survey was conducted for 665 respondents, who were sampled by stratified random sampling method, by personal interview method. The result of mean WTP for residential water quality improvement in Busan was estimated to be 3,190 won to 3,331 won per month per household, while median WTP being 1,750 won. Provided that our sample is broadly representative of the Busan's population, an estimate of the annual aggregated benefit of residential water improvement for all Busan households is approximately 50.2 billion won in case of mean WTP or 27.5 billion won in case of median WTP.

The Improvement on the Empirical Formula of Stormwater Captured Ratio for Water Quality Volume Based Non-Point Pollutants Water Quality Control Basins (WQV 기반 비점오염저감시설의 강우유출수 처리비 경험공식의 개선)

  • Choi, Daegyu;Park, Moo Jong;Park, Bae Kyung;Kim, Sangdan
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.1
    • /
    • pp.87-94
    • /
    • 2014
  • According to the technical guideline of water pollutant load management, the rainfall captured ratio which can be estimated by the empirical formula is an important element to estimate reduction loads of non-point pollutants water quality control basin. In this study, the rainfall captured ratio is altered to stormwater captured ratio considering its meaning in the technical guideline of water pollutant load management, and the new empircal formula of stormwater captured ratio is suggested. In order to do this, we calculate stormwater captured ratio by using the hourly rainfall data of seven urban weather stations (Busan, Daegu, Daejeon, Gangreung, Seoul, Gwangju, and Jeju) for 43 years. The regression coefficients of the existed empirical formula cannot reflect the catchment properties at all, because they are fixed values regardless of regions. However the empirical formula of stormwater captured ratio has flexible regression coefficients by runoff coefficient(C), so it is allowed to consider the characteristics of runoff in catchment. It is expected that reduction loads of storage based water quality control basin can be more reasonably estimated than before.

Prediction of water quality change in Saemangeum reservoir by floodgate operation at upstream (상류제수문 방류조건에 따른 새만금호의 수질변화 예측)

  • Kim, Se Min;Park, Young Ki;Lee, Dong Joo;Chung, Mahn
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.373-386
    • /
    • 2017
  • This study simulated water quality item and flow rate of subbasin for Saemangeum watershed using Soil and Water Assessment Tool (SWAT) model and Environmental Fluid Dynamics Code (EFDC) model which simulate hydraulic and water quality in three-dimensions. The simulated values corresponded to observed value well. The result of simulation for floodgate operations at the M3 and M5 points, it exceeds water quality standard and at the M3 and D3 points, change of range for concentration is too wide, and upstream of Saemangeum reservoir is sensitive to inflow flow rate. Compared to the annual average concentration for observed station according to the discharge conditions, improvement of water quality for upstream was apparently compared to the downstream. Range of influence for change of water quality presented that maximum discharge condition, the influence range is 22 km in the direction of the Saemangeum downstream from the Mankyung bridge, and 15 km in the downstream direction of saemangeum in the Dongjin bridge. This study result demonstrated that floodgate operating at upstream has significant influence on water quality management of Saemangeum reservoir and it needs to be considered in plans of water quality management for Floodgate operation on Saemangeum reservoir.