• 제목/요약/키워드: Improved method

검색결과 15,100건 처리시간 0.042초

An improved response surface method for reliability analysis of structures

  • Basaga, Hasan Basri;Bayraktar, Alemdar;Kaymaz, Irfan
    • Structural Engineering and Mechanics
    • /
    • 제42권2호
    • /
    • pp.175-189
    • /
    • 2012
  • This paper presents an algorithm for structural reliability with the response surface method. For this aim, an approach with three stages is proposed named as improved response surface method. In the algorithm, firstly, a quadratic approximate function is formed and design point is determined with First Order Reliability Method. Secondly, a point close to the exact limit state function is searched using the design point. Lastly, vector projected method is used to generate the sample points and Second Order Reliability Method is performed to obtain reliability index and probability of failure. Five numerical examples are selected to illustrate the proposed algorithm. The limit state functions of three examples (cantilever beam, highly nonlinear limit state function and dynamic response of an oscillator) are defined explicitly and the others (frame and truss structures) are defined implicitly. ANSYS finite element program is utilized to obtain the response of the structures which are needed in the reliability analysis of implicit limit state functions. The results (reliability index, probability of failure and limit state function evaluations) obtained from the improved response surface are compared with those of Monte Carlo Simulation, First Order Reliability Method, Second Order Reliability Method and Classical Response Surface Method. According to the results, proposed algorithm gives better results for both reliability index and limit state function evaluations.

임의 형상 음향 공동의 효율적인 고유치 및 고유모드 추출을 위한 개선된 NDIF법 개발 (Development of an Improved NDIF Method for Efficiently Extracting Eigenvalues and Eigenmodes of Arbitrarily Shaped Acoustic Cavities)

  • 강상욱;윤주일
    • 한국소음진동공학회논문집
    • /
    • 제21권10호
    • /
    • pp.960-966
    • /
    • 2011
  • An improved NDIF method is introduced to efficiently extract eigenvalues and eigenmodes of two-dimensional, arbitrarily shaped acoustic cavities. The NDIF method, which was developed by the authors for the eigen-mode analysis of arbitrarily shaped acoustic cavities, membranes, and plates, has the feature that it yields highly accurate eigenvalues compared with other analytical methods or numerical methods(FEM and BEM). However, the NDIF method has the weak point that the system matrix of the NDIF method depends on the frequency parameter and, as a result, a final system equation doesn's take the form of an algebra eigenvalue problem. The system matrix of the improved NDIF method developed in the paper is independent of the frequency parameter and eigenvalues and mode shapes can be efficiently obtained by solving a typical algebraic eigenvalue problem. Finally, the validity and accuracy of the proposed method is verified in two case studies, which indicate that eigenvalues and mode shapes obtained by the proposed method are very accurate compared to the exact method, the NDIF method or FEM(ANSYS).

An Improved K-means Document Clustering using Concept Vectors

  • Shin, Yang-Kyu
    • Journal of the Korean Data and Information Science Society
    • /
    • 제14권4호
    • /
    • pp.853-861
    • /
    • 2003
  • An improved K-means document clustering method has been presented, where a concept vector is manipulated for each cluster on the basis of cosine similarity of text documents. The concept vectors are unit vectors that have been normalized on the n-dimensional sphere. Because the standard K-means method is sensitive to initial starting condition, our improvement focused on starting condition for estimating the modes of a distribution. The improved K-means clustering algorithm has been applied to a set of text documents, called Classic3, to test and prove efficiency and correctness of clustering result, and showed 7% improvements in its worst case.

  • PDF

수정된 CIP방법을 이용한 벽면 충돌 후 액적의 퍼짐 현상에 대한 수치해석 연구 (NUMERICAL STUDY ON DROPLET SPREAD MOTION AFTER IMPINGEMENT ON THE WALL USING IMPROVED CIP METHOD)

  • 손소연;고권현;이성혁;유홍선
    • 한국전산유체공학회지
    • /
    • 제15권4호
    • /
    • pp.25-31
    • /
    • 2010
  • Interface tracking of two phase is significant to analyze multi-phase phenomena. The VOF(Volume of Fluid) and level set are well known interface tracking method. However, they have limitations to solve compressible flow and incompressible flow at the same time. CIP(Cubic Interpolate Propagation) method is appropriate for considering compressible and incompressible flow at once by solving the governing equation which is divided up into advection and non-advection term. In this article, we analyze the droplet impingement according to various We number using improved CIP method which treats nonlinear term once more comparison with original CIP method. Furthermore, we compare spread radius after droplet impingement on the wall with the experimental data and original CIP method. The result using improved CIP method shows the better result of the experiments, comparison with result of original CIP method, and it reduces the mass conservation error which is generated in the numerical analysis comparison with original CIP method.

Improved first-order method for estimating extreme wind pressure considering directionality for non-typhoon climates

  • Wang, Jingcheng;Quan, Yong;Gu, Ming
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.473-482
    • /
    • 2020
  • The first-order method for estimating the extreme wind pressure on building envelopes with consideration of the directionality of wind speed and wind pressure is improved to enhance its computational efficiency. In this improved method, the result is obtained directly from the empirical distribution of a random selection of annual maximum wind pressure samples generated by a Monte Carlo method, rather than from the previously utilized extreme wind pressure probability distribution. A discussion of the relationship between the first- and full-order methods indicates that when extreme wind pressures in a non-typhoon climate with a high return period are estimated with consideration of directionality, using the relatively simple first-order method instead of the computationally intensive full-order method is reasonable. The validation of this reasonableness is equivalent to validating two assumptions to improve its computational efficiency: 1) The result obtained by the full-order method is conservative when the extreme wind pressure events among different sectors are independent. 2) The result obtained by the first-order method for a high return period is not significantly affected when the extreme wind speeds among the different sectors are assumed to be independent. These two assumptions are validated by examples in different regions and theoretical derivation.

저주파필터를 적용한 Wegmann 방법의 수렴성에 관한 연구 (A study on the convergence of Wegmann's method applying a low frequency pass filter)

  • 송은지
    • 정보처리학회논문지A
    • /
    • 제11A권2호
    • /
    • pp.203-206
    • /
    • 2004
  • 저자는 등각사상을 구하기 위한 기존의 여러 Theodorsen 방정식의 해법 중 가장 유효한 해법으로 알려져 있는 Wegmann의 방법을 다룬바 있다. Wegmann의 방법으로 수치실험을 한 결과 난이도가 높다고 예상되는 문제에 있어 수렴했다가 발산을 하는 불안정현상이 나타났으며 수렵하지 않는 불안정현상의 원인을 분석하여 저주파필터를 적용한 새로운 반복법을 제안하였다. 원래의 Wegmann 반복법으로는 발산하는 모튼 문제에 있어서 새로 제안한 방법에 의해서 수렴하는 수치실험 결과를 얻었는데 본 논문에서는 저주파필터를 적용한 Wegmann해법에 의해 실험적으로 수렴한 결과를 Fourier 분석기법에 의해 이론적으로 증명한다.

Theoretical research on the identification method of bridge dynamic parameters using free decay response

  • Tan, Guo-Jin;Cheng, Yong-Chun;Liu, Han-Bing;Wang, Long-Lin
    • Structural Engineering and Mechanics
    • /
    • 제38권3호
    • /
    • pp.349-359
    • /
    • 2011
  • Input excitation and output response of structure are needed in conventional modal analysis methods. However, input excitation is often difficult to be obtained in the dynamic load test of bridge structures. Therefore, what attracts engineers' attention is how to get dynamic parameters from the output response. In this paper, a structural experimental modal analysis method is introduced, which can be used to conveniently obtain dynamic parameters of the structure from the free decay response. With known damping coefficients, this analysis method can be used to identify the natural frequencies and the mode shapes of MDOF structures. Based on the modal analysis theory, the mathematical relationship of damping ratio and frequency is obtained. By using this mathematical relationship to improve the previous method, an improved experimental modal analysis method is proposed in this paper. This improved method can overcome the deficiencies of the previous method, which can not identify damping ratios and requires damping coefficients in advance. Additionally, this improved method can also identify the natural frequencies, mode shapes and damping ratios of the bridge only from the free decay response, and ensure the stability of identification process by using modern mathematical means. Finally, the feasibility and effectiveness of this method are demonstrated by a numerical example of a simply supported reinforced concrete beam.

퓨리에 후처리 보상 기법을 이용한 향상된 MELP 음성부호화기 (Improved MELP Coder Using Fourier Post Processing Compensation Method)

  • 고봉옥;김종교
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2002년도 하계학술발표대회 논문집 제21권 1호
    • /
    • pp.195-198
    • /
    • 2002
  • This paper presents an improved MELP Coder using Fourier magnitude compensation method chosen the new 2.4 kbit/s U.S. federal Standard. Although the MELP is quite good, it has some distortion for low-pitch male speakers. An improved MELP coder includes a post processing for the fourier magnitude model that allows the MELP to reconstruct the lower frequency spectrum more accurately and improve the speech quality. In this new compensation algorithm, the harmonic magnitudes in the low frequencies are adaptively modified by removing the effect of the two filters. Also, the bit rate of the improved MELP coder is the same as that of the Federal Standard MELP coder. formal quality tests show that the improved MELP coder was preferred over the Federal Standard MELP coder by $80.8\%$.

  • PDF

Reproduction of vibration patterns of elastic structures by block-wise modal expansion method (BMEM)

  • Jung, B.K.;Cho, J.R.;Jeong, W.B.
    • Smart Structures and Systems
    • /
    • 제18권4호
    • /
    • pp.819-837
    • /
    • 2016
  • The quality of vibration pattern reproduction of elastic structures by the modal expansion method is influenced by the modal expansion method and the sensor placement as well as the accuracy of measured natural modes and the total number of vibration sensors. In this context, this paper presents an improved numerical method for reproducing the vibration patterns by introducing a block-wise modal expansion method (BMEM), together with the genetic algorithm (GA). For a given number of vibration sensors, the sensor positions are determined by an evolutionary optimization using GA and the modal assurance criterion (MAC). Meanwhile, for the proposed block-wise modal expansion, a whole frequency range of interest is divided into several overlapped frequency blocks and the vibration field reproduction is made block by block with different natural modes and different modal participation factors. A hollow cylindrical tank is taken to illustrate the proposed improved modal expansion method. Through the numerical experiments, the proposed method is compared with several conventional methods to justify that the proposed method provides the improved results.

개선된 격자기반 적합 표면입자법을 이용한 자유표면유동 수치해석 (Numerical Analysis of Free-Surface Flows Using Improved Adaptable Surface Particle Method Based on Grid System)

  • 신영섭
    • 대한조선학회논문집
    • /
    • 제58권2호
    • /
    • pp.90-96
    • /
    • 2021
  • In this study, the method of determining the state of grid points in the adaptable surface particle method based on grid system developed as a free-surface tracing method was improved. The adaptable surface particle method is a method of determining the state of the grid point according to the shape of the free-surface and obtaining the intersection of the given free-surface and grid line where the state of the grid point changes. It is difficult to determine the state of grid points in the event of rapid flow, such as collision or separation of free-surfaces, and this study suggests a method for determining the state of current grid points using the state of surrounding grid points where the state of grid point are known. A grid layer value was assigned sequentially to a grid away from the free-surface, centering on the boundary cell where the free-surface exists, to identify the connection information that the grid was separated from the free-surface, and to determine the state of the grid point sequentially from a grid away from the free-surface to a grid close to the free-surface. To verify the improved method, a numerical analysis was made on the problem of dam break in which a sudden collision of free-surface occurred and the results were compared, and the results were relatively reasonable.