• Title/Summary/Keyword: Improved harmony search (IHS)

Search Result 6, Processing Time 0.028 seconds

Partial Transmit Sequence Optimization Using Improved Harmony Search Algorithm for PAPR Reduction in OFDM

  • Singh, Mangal;Patra, Sarat Kumar
    • ETRI Journal
    • /
    • v.39 no.6
    • /
    • pp.782-793
    • /
    • 2017
  • This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.

Improvement of multi layer perceptron performance using combination of adaptive moments and improved harmony search for prediction of Daecheong Dam inflow (대청댐 유입량 예측을 위한 Adaptive Moments와 Improved Harmony Search의 결합을 이용한 다층퍼셉트론 성능향상)

  • Lee, Won Jin;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.1
    • /
    • pp.63-74
    • /
    • 2023
  • High-reliability prediction of dam inflow is necessary for efficient dam operation. Recently, studies were conducted to predict the inflow of dams using Multi Layer Perceptron (MLP). Existing studies used the Gradient Descent (GD)-based optimizer as the optimizer among MLP operators to find the optimal correlation between data. However, the GD-based optimizers have disadvantages in that the prediction performance is deteriorated due to the possibility of convergence to the local optimal value and the absence of storage space. This study improved the shortcomings of the GD-based optimizer by developing Adaptive moments combined with Improved Harmony Search (AdamIHS), which combines Adaptive moments among GD-based optimizers and Improved Harmony Search (IHS). In order to evaluate the learning and prediction performance of MLP using AdamIHS, Daecheong Dam inflow was learned and predicted and compared with the learning and prediction performance of MLP using GD-based optimizer. Comparing the learning results, the Mean Squared Error (MSE) of MLP, which is 5 hidden layers using AdamIHS, was the lowest at 11,577. Comparing the prediction results, the average MSE of MLP, which is one hidden layer using AdamIHS, was the lowest at 413,262. Using AdamIHS developed in this study, it will be possible to show improved prediction performance in various fields.

Development of Hybrid Vision Correction Algorithm (Hybrid Vision Correction Algorithm의 개발)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • Metaheuristic search methods have been developed to solve problems with a range of purpose functions in situations lacking information and time constraints. In this study, the Hybrid Vision Correction Algorithm (HVCA), which enhances the performance of the Vision Correction Algorithm (VCA), was developed. The HVCA has applied two methods to improve the performance of VCA. The first method changes the parameters required by the user for self-adaptive parameters. The second method, the CGS structure of the Exponential Bandwidth Harmony Search With a Centralized Global Search (EBHS-CGS), was added to the HVCA. The HVCA consists of two structures: CGS and VCA. To use the two structures, a method was applied to increase the probability of selecting the structure with the optimal value as it was performed. The optimization problem was applied to determine the performance of the HVCA, and the results were compared with Harmony Search (HS), Improved Harmony Search (IHS), and VCA. The HVCA improved the number of times to find the optimal value during 100 repetitions compared to HS, IHS, and VCA. Moreover, the HVCA reduced the Number of Function Evaluations (NFEs). Therefore, the performance of the HVCA has been improved.

Development of the Meta-heuristic Optimization Algorithm: Exponential Bandwidth Harmony Search with Centralized Global Search (새로운 메타 휴리스틱 최적화 알고리즘의 개발: Exponential Bandwidth Harmony Search with Centralized Global Search)

  • Kim, Young Nam;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.2
    • /
    • pp.8-18
    • /
    • 2020
  • An Exponential Bandwidth Harmony Search with Centralized Global Search (EBHS-CGS) was developed to enhance the performance of a Harmony Search (HS). EBHS-CGS added two methods to improve the performance of HS. The first method is an improvement of bandwidth (bw) that enhances the local search. This method replaces the existing bw with an exponential bw and reduces the bw value as the iteration proceeds. This form of bw allows for an accurate local search, which enables the algorithm to obtain more accurate values. The second method is to reduce the search range for an efficient global search. This method reduces the search space by considering the best decision variable in Harmony Memory (HM). This process is carried out separately from the global search of the HS by the new parameter, Centralized Global Search Rate (CGSR). The reduced search space enables an effective global search, which improves the performance of the algorithm. The proposed algorithm was applied to a representative optimization problem (math and engineering), and the results of the application were compared with the HS and better Improved Harmony Search (IHS).

Application of modified hybrid vision correction algorithm for an optimal design of water distribution system (상수관망 최적설계를 위한 Modified Hybrid Vision Correction Algorithm의 적용)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.7
    • /
    • pp.475-484
    • /
    • 2021
  • The optimal design for water distribution system (WDS) is not only satisfying the minimum required water pressure of the nodes, but also minimizing pipe cost, etc. The number of designs of WDS increases exponentially due to the arrangement of various pipes. Various optimization algorithms were applied to propose an optimized design of WDS. In this study, Modified Hybrid Vision Correction Algorithm (MHVCA) with improved self-adapting parameter was applied to optimal design of WDS. The performance was improved by changing the Hybrid Rate (HR) of the existing Hybrid Vision Correction Algorithm (HVCA) to nonlinear HR. To verify the performance of the proposed MHVCA, it applied to mathematical problems consisting of 2 and 30 decision variables and constrained mathematical problems. In order to review the application results of MHVCA, it was compared with Harmony Search (HS), Improved Harmony Search (IHS), Vision Correction Algorithm (VCA) and HVCA. Finally, MHVCA was applied to the optimal design problem of WDS and the results were compared with other algorithms. MHVCA showed better results than other algorithms in mathematical problems and WDS problem. MHVCA will be able to show good results by applying to various water resource engineering problems as well as problems applied in this study.

Reduced record method for efficient time history dynamic analysis and optimal design

  • Kaveh, A.;Aghakouchak, A.A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.639-663
    • /
    • 2015
  • Time history dynamic structural analysis is a time consuming procedure when used for large-scale structures or iterative analysis in structural optimization. This article proposes a new methodology for approximate prediction of extremum point of the response history via wavelets. The method changes original record into a reduced record, decreasing the computational time of the analysis. This reduced record can be utilized in iterative structural dynamic analysis of optimization and hence significantly reduces the overall computational effort. Design examples are included to demonstrate the capability and efficiency of the Reduced Record Method (RRM) when utilized in optimal design of frame structures using meta-heuristic algorithms.