• Title/Summary/Keyword: Improved deep learning

Search Result 571, Processing Time 0.023 seconds

Deep Learning: High-quality Imaging through Multicore Fiber

  • Wu, Liqing;Zhao, Jun;Zhang, Minghai;Zhang, Yanzhu;Wang, Xiaoyan;Chen, Ziyang;Pu, Jixiong
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.286-292
    • /
    • 2020
  • Imaging through multicore fiber (MCF) is of great significance in the biomedical domain. Although several techniques have been developed to image an object from a signal passing through MCF, these methods are strongly dependent on the surroundings, such as vibration and the temperature fluctuation of the fiber's environment. In this paper, we apply a new, strong technique called deep learning to reconstruct the phase image through a MCF in which each core is multimode. To evaluate the network, we employ the binary cross-entropy as the loss function of a convolutional neural network (CNN) with improved U-net structure. The high-quality reconstruction of input objects upon spatial light modulation (SLM) can be realized from the speckle patterns of intensity that contain the information about the objects. Moreover, we study the effect of MCF length on image recovery. It is shown that the shorter the fiber, the better the imaging quality. Based on our findings, MCF may have applications in fields such as endoscopic imaging and optical communication.

Lightweight Convolution Module based Detection Model for Small Embedded Devices (소형 임베디드 장치를 위한 경량 컨볼루션 모듈 기반의 검출 모델)

  • Park, Chan-Soo;Lee, Sang-Hun;Han, Hyun-Ho
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.9
    • /
    • pp.28-34
    • /
    • 2021
  • In the case of object detection using deep learning, both accuracy and real-time are required. However, it is difficult to use a deep learning model that processes a large amount of data in a limited resource environment. To solve this problem, this paper proposes an object detection model for small embedded devices. Unlike the general detection model, the model size was minimized by using a structure in which the pre-trained feature extractor was removed. The structure of the model was designed by repeatedly stacking lightweight convolution blocks. In addition, the number of region proposals is greatly reduced to reduce detection overhead. The proposed model was trained and evaluated using the public dataset PASCAL VOC. For quantitative evaluation of the model, detection performance was measured with average precision used in the detection field. And the detection speed was measured in a Raspberry Pi similar to an actual embedded device. Through the experiment, we achieved improved accuracy and faster reasoning speed compared to the existing detection method.

Implementation of Finger Vein Authentication System based on High-performance CNN (고성능 CNN 기반 지정맥 인증 시스템 구현)

  • Kim, Kyeong-Rae;Choi, Hong-Rak;Kim, Kyung-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.5
    • /
    • pp.197-202
    • /
    • 2021
  • Biometric technology using finger veins is receiving a lot of attention due to its high security, convenience and accuracy. And the recent development of deep learning technology has improved the processing speed and accuracy for authentication. However, the training data is a subset of real data not in a certain order or method and the results are not constant. so the amount of data and the complexity of the artificial neural network must be considered. In this paper, the deep learning model of Inception-Resnet-v2 was used to improve the high accuracy of the finger vein recognizer and the performance of the authentication system, We compared and analyzed the performance of the deep learning model of DenseNet-201. The simulations used data from MMCBNU_6000 of Jeonbuk National University and finger vein images taken directly. There is no preprocessing for the image in the finger vein authentication system, and the results are checked through EER.

Deep Learning based Image Recognition Models for Beef Sirloin Classification (딥러닝 이미지 인식 기술을 활용한 소고기 등심 세부 부위 분류)

  • Han, Jun-Hee;Jung, Sung-Hun;Park, Kyungsu;Yu, Tae-Sun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.1-9
    • /
    • 2021
  • This research examines deep learning based image recognition models for beef sirloin classification. The sirloin of beef can be classified as the upper sirloin, the lower sirloin, and the ribeye, whereas during the distribution process they are often simply unified into the sirloin region. In this work, for detailed classification of beef sirloin regions we develop a model that can learn image information in a reasonable computation time using the MobileNet algorithm. In addition, to increase the accuracy of the model we introduce data augmentation methods as well, which amplifies the image data collected during the distribution process. This data augmentation enables to consider a larger size of training data set by which the accuracy of the model can be significantly improved. The data generated during the data proliferation process was tested using the MobileNet algorithm, where the test data set was obtained from the distribution processes in the real-world practice. Through the computational experiences we confirm that the accuracy of the suggested model is up to 83%. We expect that the classification model of this study can contribute to providing a more accurate and detailed information exchange between suppliers and consumers during the distribution process of beef sirloin.

Non-Profiling Power Analysis Attacks Using Continuous Wavelet Transform Method (연속 웨이블릿 변환을 사용한 비프로파일링 기반 전력 분석 공격)

  • Bae, Daehyeon;Lee, Jaewook;Ha, Jaecheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1127-1136
    • /
    • 2021
  • In the field of power analysis attacks, electrical noise and misalignment of the power consumption trace are the major factors that determine the success of the attack. Therefore, several studies have been conducted to overcome this problem, and one of them is a signal processing method based on wavelet transform. Up to now, discrete wavelet transform, which can compress the trace, has been mostly used for power side-channel power analysis because continuous wavelet transform techniques increase data size and analysis time, and there is no efficient scale selection method. In this paper, we propose an efficient scale selection method optimized for power analysis attacks. Furthermore, we show that the analysis performance can be greatly improved when using the proposed method. As a result of the CPA(Correlation Power Analysis) and DDLA(Differential Deep Learning Analysis) experiments, which are non-profiling attacks, we confirmed that the proposed method is effective for noise reduction and trace alignment.

Printer Identification Methods Using Global and Local Feature-Based Deep Learning (전역 및 지역 특징 기반 딥러닝을 이용한 프린터 장치 판별 기술)

  • Lee, Soo-Hyeon;Lee, Hae-Yeoun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • With the advance of digital IT technology, the performance of the printing and scanning devices is improved and their price becomes cheaper. As a result, the public can easily access these devices for crimes such as forgery of official and private documents. Therefore, if we can identify which printing device is used to print the documents, it would help to narrow the investigation and identify suspects. In this paper, we propose a deep learning model for printer identification. A convolutional neural network model based on local features which is widely used for identification in recent is presented. Then, another model including a step to calculate global features and hence improving the convergence speed and accuracy is presented. Using 8 printer models, the performance of the presented models was compared with previous feature-based identification methods. Experimental results show that the presented model using local feature and global feature achieved 97.23% and 99.98% accuracy respectively, which is much better than other previous methods in accuracy.

Rock Classification Prediction in Tunnel Excavation Using CNN (CNN 기법을 활용한 터널 암판정 예측기술 개발)

  • Kim, Hayoung;Cho, Laehun;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.9
    • /
    • pp.37-45
    • /
    • 2019
  • Quick identification of the condition of tunnel face and optimized determination of support patterns during tunnel excavation in underground construction projects help engineers prevent tunnel collapse and safely excavate tunnels. This study investigates a CNN technique for quick determination of rock quality classification depending on the condition of tunnel face, and presents the procedure for rock quality classification using a deep learning technique and the improved method for accurate prediction. The VGG16 model developed by tens of thousands prestudied images was used for deep learning, and 1,469 tunnel face images were used to classify the five types of rock quality condition. In this study, the prediction accuracy using this technique was up to 83.9%. It is expected that this technique can be used for an error-minimizing rock quality classification system not depending on experienced professionals in rock quality rating.

Early Prediction Model of Student Performance Based on Deep Neural Network Using Massive LMS Log Data (대용량 LMS 로그 데이터를 이용한 심층신경망 기반 대학생 학업성취 조기예측 모델)

  • Moon, Kibum;Kim, Jinwon;Lee, Jinsook
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.10
    • /
    • pp.1-10
    • /
    • 2021
  • Log data accumulated in the Learning Management System (LMS) provide high-quality information for the learning process of students. Until now, various studies have been conducted to predict students' academic achievement using LMS log data. However, previous studies were based on relatively small sample sizes of students and courses, limiting the possibility of generalization. This study developed and validated a deep neural network model for the early prediction of academic achievement of college students using massive LMS log data. To this end, we used 78,466,385 cases of LMS log data and 165,846 cases of grade data. The proposed model predicted the excellent-grade students with a high level of accuracy from the beginning of the semester. Meanwhile, the prediction accuracy for the moderate and underachieving groups was relatively low, but the accuracy improved as the time points of the prediction were delayed. This study is meaningful in that we developed an early prediction model based on a deep neural network with sufficient accuracy for practical utilization by only using LMS log data.

A Development of Façade Dataset Construction Technology Using Deep Learning-based Automatic Image Labeling (딥러닝 기반 이미지 자동 레이블링을 활용한 건축물 파사드 데이터세트 구축 기술 개발)

  • Gu, Hyeong-Mo;Seo, Ji-Hyo;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.35 no.12
    • /
    • pp.43-53
    • /
    • 2019
  • The construction industry has made great strides in the past decades by utilizing computer programs including CAD. However, compared to other manufacturing sectors, labor productivity is low due to the high proportion of workers' knowledge-based task in addition to simple repetitive task. Therefore, the knowledge-based task efficiency of workers should be improved by recognizing the visual information of computers. A computer needs a lot of training data, such as the ImageNet project, to recognize visual information. This study, aim at proposing building facade datasets that is efficiently constructed by quickly collecting building facade data through portal site road view and automatically labeling using deep learning as part of construction of image dataset for visual recognition construction by the computer. As a method proposed in this study, we constructed a dataset for a part of Dongseong-ro, Daegu Metropolitan City and analyzed the utility and reliability of the dataset. Through this, it was confirmed that the computer could extract the significant facade information of the portal site road view by recognizing the visual information of the building facade image. Additionally, In contribution to verifying the feasibility of building construction image datasets. this study suggests the possibility of securing quantitative and qualitative facade design knowledge by extracting the facade design knowledge from any facade all over the world.

A Development on Deep Learning-based Detecting Technology of Rebar Placement for Improving Building Supervision Efficiency (감리업무 효율성 향상을 위한 딥러닝 기반 철근배근 디텍팅 기술 개발)

  • Park, Jin-Hui;Kim, Tae-Hoon;Choo, Seung-Yeon
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.36 no.5
    • /
    • pp.93-103
    • /
    • 2020
  • The purpose of this study is to suggest a supervisory way to improve the efficiency of Building Supervision using Deep Learning, especially object detecting technology. Since the establishment of the Building Supervision system in Korea, it has been changed and improved many times systematically, but it is hard to find any improvement in terms of implementing methods. Therefore, the Supervision is until now the area where a lot of money, time and manpower are needed. This might give a room for superficial, formal and documentary supervision that could lead to faulty construction. This study suggests a way of Building Supervision which is more automatic and effective so that it can lead to save the time, effort and money. And the way is to detect the hoop-bars of a column and count the number of it automatically. For this study, we made a hoop-bar detecting network by transfor learnning of YOLOv2 network through MATLAB. Among many training experiments, relatively most accurate network was selected, and this network was able to detect rebar placement in building site pictures with the accuracy of 92.85% for similar images to those used in trainings, and 90% or more for new images at specific distance. It was also able to count the number of hoop-bars. The result showed the possibility of automatic Building Supervision and its efficiency improvement.