• 제목/요약/키워드: Improved Support Vector Machine

검색결과 144건 처리시간 0.031초

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Machine learning-based techniques to facilitate the production of stone nano powder-reinforced manufactured-sand concrete

  • Zanyu Huang;Qiuyue Han;Adil Hussein Mohammed;Arsalan Mahmoodzadeh;Nejib Ghazouani;Shtwai Alsubai;Abed Alanazi;Abdullah Alqahtani
    • Advances in nano research
    • /
    • 제15권6호
    • /
    • pp.533-539
    • /
    • 2023
  • This study aims to examine four machine learning (ML)-based models for their potential to estimate the splitting tensile strength (STS) of manufactured sand concrete (MSC). The ML models were trained and tested based on 310 experimental data points. Stone nanopowder content (SNPC), curing age (CA), and water-to-cement (W/C) ratio were also studied for their impacts on the STS of MSC. According to the results, the support vector regression (SVR) model had the highest correlation with experimental data. Still, all of the optimized ML models showed promise in estimating the STS of MSC. Both ML and laboratory results showed that MSC with 10% SNPC improved the STS of MSC.

Using Machine Learning Techniques for Accurate Attack Detection in Intrusion Detection Systems using Cyber Threat Intelligence Feeds

  • Ehtsham Irshad;Abdul Basit Siddiqui
    • International Journal of Computer Science & Network Security
    • /
    • 제24권4호
    • /
    • pp.179-191
    • /
    • 2024
  • With the advancement of modern technology, cyber-attacks are always rising. Specialized defense systems are needed to protect organizations against these threats. Malicious behavior in the network is discovered using security tools like intrusion detection systems (IDS), firewall, antimalware systems, security information and event management (SIEM). It aids in defending businesses from attacks. Delivering advance threat feeds for precise attack detection in intrusion detection systems is the role of cyber-threat intelligence (CTI) in the study is being presented. In this proposed work CTI feeds are utilized in the detection of assaults accurately in intrusion detection system. The ultimate objective is to identify the attacker behind the attack. Several data sets had been analyzed for attack detection. With the proposed study the ability to identify network attacks has improved by using machine learning algorithms. The proposed model provides 98% accuracy, 97% precision, and 96% recall respectively.

분류 알고리즘과 NCA를 활용한 기계학습 기반 구조건전성 모니터링 시스템 (Machine Learning Based Structural Health Monitoring System using Classification and NCA)

  • 신창교;권현석;박유림;김천곤
    • 한국항행학회논문지
    • /
    • 제23권1호
    • /
    • pp.84-89
    • /
    • 2019
  • 본 연구는 복합재 항공기의 비행 데이터를 활용한 기계학습 기반 구조건전성 모니터링 시스템 연구의 예비 연구이다. 본 연구에서는 구조건전성 모니터링에 이용되기에 가장 적합한 기계학습 알고리즘을 선별하고, 실 기체 데이터에 대한 적용을 위해 차원 축소를 수행하였다. 이를 위해 외팔보를 통해 모사된 항공기 날개 구조와 부가 질량을 통해 손상 모사 실험을 진행하고, 분류 알고리즘을 통해 데이터를 손상의 위치와 정도에 따라 구분하였다. 이를 위해 FBG (fiber bragg grating) 센서를 부착한 외팔보의 진동 실험을 통해 정상상태와 12개의 손상상태에 대한 데이터를 취득하고, MATLAB 환경에서 tree, discriminant, SVM (support vector machine), kNN, ensemble 알고리즘의 비교와 파라미터 튜닝을 통해 가장 적합한 알고리즘을 도출하였다. 또한 NCA (neighborhood component analysis)를 이용한 특징 선택을 통해, 실 기체에서 나올 수 있는 고차원 데이터의 관리를 위해 필요한 차원 축소를 수행하였다. 그 결과, quadratic SVM이 NCA를 적용하지 않은 모델에서 98.7%, NCA를 적용한 모델에서 95.9%로 가장 높은 정답률을 보였다. 또한 NCA 적용 후 모델의 예측 속도, 학습 시간, 용량이 모두 향상되었다.

Transfer Learning based DNN-SVM Hybrid Model for Breast Cancer Classification

  • Gui Rae Jo;Beomsu Baek;Young Soon Kim;Dong Hoon Lim
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권11호
    • /
    • pp.1-11
    • /
    • 2023
  • 유방암은 전 세계적으로 여성들 대다수에게 가장 두려워하는 질환이다. 오늘날 데이터의 증가와 컴퓨팅 기술의 향상으로 머신러닝(machine learning)의 효율성이 증대되어 암 검출 및 진단 등에 중요한 역할을 하고 있다. 딥러닝(deep learning)은 인공신경망(artificial neural network, ANN)을 기반으로 하는 머신러닝 기술의 한 분야로 최근 여러 분야에서 성능이 급속도로 개선되어 활용 범위가 확대되고 있다. 본 연구에서는 유방암 분류를 위해 전이학습(transfer learning) 기반 DNN(Deep Neural Network)과 SVM(support vector machine)의 구조를 결합한 DNN-SVM Hybrid 모형을 제안한다. 전이학습 기반 제안된 모형은 적은 학습 데이터에도 효과적이고, 학습 속도도 빠르며, 단일모형, 즉 DNN과 SVM이 가지는 장점을 모두 활용 가능토록 결합함으로써 모형 성능이 개선되었다. 제안된 DNN-SVM Hybrid 모형의 성능평가를 위해 UCI 머신러닝 저장소에서 제공하는 WOBC와 WDBC 유방암 자료를 가지고 성능실험 결과, 제안된 모형은 여러 가지 성능 척도 면에서 단일모형인 로지스틱회귀 모형, DNN, SVM 그리고 앙상블 모형인 랜덤 포레스트보다 우수함을 보였다.

문헌간 유사도를 이용한 SVM 분류기의 문헌분류성능 향상에 관한 연구 (Improving the Performance of SVM Text Categorization with Inter-document Similarities)

  • 이재윤
    • 정보관리학회지
    • /
    • 제22권3호
    • /
    • pp.261-287
    • /
    • 2005
  • 이 논문의 목적은 SVM(지지벡터기계) 분류기의 성능을 문헌간 유사도를 이용해서 향상시키는 것이다. SVM은 효과적인 기계학습 시스템으로서 최고 수준의 문헌자동분류 기술로 인정받고 있다. 이 연구에서는 문헌 벡터 자질 표현에 기반한 SVM 문헌자동분류를 제안하였다. 제안한 방식은 분류 자질로 색인어 대신 문헌 벡터를, 자질 값으로 가중치 대신 벡터유사도를 사용한다. 제안한 방식에 대한 실험 결과, SVM 분류기의 성능을 향상시킬 수 있었다. 실행 효율 향상을 위해서 문헌 벡터 자질 선정 방안과 범주 센트로이드 벡터를 사용하는 방안을 제안하였다. 실험 결과 소규모의 벡터 자질 집합만으로도 색인어 자질을 사용하는 기존 방식보다 나은 성능을 얻을 수 있었다.

랜덤포레스트와 서포트벡터머신 기법을 적용한 포인트 클라우드와 실감정사영상을 이용한 객체분류 (Object Classification Using Point Cloud and True Ortho-image by Applying Random Forest and Support Vector Machine Techniques)

  • 서홍덕;김의명
    • 한국측량학회지
    • /
    • 제37권6호
    • /
    • pp.405-416
    • /
    • 2019
  • 정보통신기술의 발달로 인하여 데이터의 생산과 처리 속도가 빨라지고 있다. 인공지능의 한 분야인 머신러닝을 이용하여 객체를 분류하기 위해, 학습에 필요한 데이터는 인터넷과 공간정보기술의 발달로 인하여 손쉽게 수집할 수 있게 되었다. 공간정보 분야에서도 머신러닝은 영상, 포인트 클라우드 등을 이용하여 객체를 분류 또는 인식하는 것에 적용되고 있다. 본 연구에서는 기 구축된 수치지도 버전 1.0을 활용하여 학습 데이터를 수동으로 구축하는 문제점을 개선하고 영상과 포인트 클라우드를 이용하여 도로, 건물, 식생을 분류하는 기법을 제안하였다. 실험을 통해서 RGB 밴드만을 갖고 있는 실감정사영상을 사용하였을 경우 색상을 뚜렷하게 구분할 수 있는 도로, 건물, 식생의 분류가 가능하였지만 색상이 유사한 경우에는 분류가 잘 되지 않는 한계를 확인할 수 있었다. 이를 개선하기 위해 실감정사영상과 정규수치표면모델을 밴드 퓨전한 후 랜덤포레스트와 서포트벡터머신 기법을 적용하였으며 이를 통해 85%이상의 정확도로 도로, 건물, 식생을 분류하였다.

Classification of Textured Images Based on Discrete Wavelet Transform and Information Fusion

  • Anibou, Chaimae;Saidi, Mohammed Nabil;Aboutajdine, Driss
    • Journal of Information Processing Systems
    • /
    • 제11권3호
    • /
    • pp.421-437
    • /
    • 2015
  • This paper aims to present a supervised classification algorithm based on data fusion for the segmentation of the textured images. The feature extraction method we used is based on discrete wavelet transform (DWT). In the segmentation stage, the estimated feature vector of each pixel is sent to the support vector machine (SVM) classifier for initial labeling. To obtain a more accurate segmentation result, two strategies based on information fusion were used. We first integrated decision-level fusion strategies by combining decisions made by the SVM classifier within a sliding window. In the second strategy, the fuzzy set theory and rules based on probability theory were used to combine the scores obtained by SVM over a sliding window. Finally, the performance of the proposed segmentation algorithm was demonstrated on a variety of synthetic and real images and showed that the proposed data fusion method improved the classification accuracy compared to applying a SVM classifier. The results revealed that the overall accuracies of SVM classification of textured images is 88%, while our fusion methodology obtained an accuracy of up to 96%, depending on the size of the data base.

다양한 Gamma 보정을 이용한 HOG-LBP 기반 사람검출 (People Detection based HOG-LBP using Various Gamma Correction)

  • 고정섭;이철희
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 춘계학술대회
    • /
    • pp.639-641
    • /
    • 2012
  • 기울기 값과 방향성의 특징 값을 이용하는 HOG와 선형SVM을 분류기로 사용하는 사람검출 기법은 슬라이딩 윈도우 기반 사람검출에 성공적으로 적용되었다. 또한 텍스처 구별에 강인한 특징을 가지고 있는 LBP를 HOG와 함께 특징 서술자로 적용하는 방법은 서로의 단점을 상호 보안하여 향상된 성능을 보인다. 본 논문에서는 기존 HOG제곱근 Gamma 보정을 다양한 Gamma 보정 값으로 대체하고 성능을 분석한다.

  • PDF

풍력발전기 모사 시스템에서의 균열 결함 진단에 대한 연구 (A Study on Crack Fault Diagnosis of Wind Turbine Simulation System)

  • 배근호;박종원;김봉기;최병오
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제14권4호
    • /
    • pp.208-212
    • /
    • 2014
  • An experimental gear-box was set-up to simulate the real situation of the wind-turbine. Artificial cracks of different sizes were machined into the gear. Vibration signals were acquired to diagnose the different crack fault conditions. Time-domain features such as root mean square, variance, kurtosis, normalized 6th central moments were used to capture the characteristics of different crack conditions. Normal condition, 1 mm crack condition, 2mm crack condition, 6mm crack condition, and tooth fault condition were compared using ANFIS and DAG-SVM methods, and three different DAG-SVM models were compared. High-pass filtering improved the success rates remarkably in the case of DAG-SVM.